EXPANDING THE REALM OF POSSIBILITY

PAVEMENT TEXTURE AND FRICTION

Presentation to:

SWIFT

September 2007 Jim W. Hall, Jr.

Basics of Pavement Friction

Friction - force that resists the relative motion between a tire and pavement surface

Pavement Friction versus Tire Slip

(Henry, 2000)

- Friction increases rapidly with increasing slip
- Peak value between 10 and 20 percent slip (critical slip)
- Friction decreases to coefficient of sliding friction at 100 percent slip
- Difference between the peak and sliding coefficients may equal 50 percent of sliding value
- This disparity is much greater on wet pavements
- Anti-locking brake system (ABS) uses this principle

Components of Friction

Adhesion Function of micro-texture **Hysteresis** Function of macro-texture

-	÷	f /	۱.	
	T	` L	7	
Ai	Vς	1	۱	
7 11	•			

 $F_{HI} = C^* (E_c - E_e)_i$

Total Braking Force, F, equals: $F = F_A + F_H$

Components of Friction

Hysteresis is:

- force generated within the deflected, visco-elastic tire tread
- a function of speed
- mainly related to macro-texture
- Adhesion is related to micro-texture
- For wet pavements
 - adhesion drops off with increased speed
 - hysteresis increases with speed
 - above 56 mi/hr (90 km/hr) macro-texture accounts for over 90 percent of friction
- Winter friction on snow and ice is function of contaminant

Micro and Macro Textures

- Micro-texture provides pavement friction at low speeds
- Macro-texture:
 - reduces potential for hydroplaning
 - provides friction by hysteresis at high speeds

Surface Texturing (PCC pavements)

Grinding

Grooving

Surface Texturing (AC pavements)

Grooved AC

Porous Friction

PIARC Texture Classification

Measurement of Texture and Friction (highways)

Micro-texture

- ASTM E 274 Locked Wheel
- ASTM E 524 (smooth tire)
- ASTM E 501 (ribbed tire)
- Smooth tire recommended for friction measurement
- Spot measurements are made on highways since tire wear would be a problem for continuous runs
- ASTM E 1911 (Dynamic Friction Tester)
- ASTM E 303 (British Pendulum Tester)

Measurement of Texture and Friction (highways)

- Macro-Texture
 - ASTM E 2157 Circular Texture Meter
 - ASTM E 965 Sand Patch
 - ASTM E 2389 Outflow Meter

Expanding the Realm of Possibility

Measurement of Texture and Friction

- Macro-Texture
 - High-speed laser based devices

High-Speed Inertial Profilers

FHWA ROSANv

Measurement of Texture and Friction (Runways)

Microtexture (friction)

- ASTM E 274 Fixed slip (GripTester, Mu-Meter)
- ASTM E 1859 Variable slip (French IMAG; Norwegian Norsemeter RUNAR)
- Runways tested with continuous measurements since tire wear is not a problem for one or two miles
- Macro-texture
 - ASTM E 2157 (Circular Texture Meter)
 - ASTM E 965 (Sand Patch)

Expanding the Realm of Possibility

Department of National Defence Friction Testing

- Friction measurements with Grip Tester
- Continuous measurements for length of runway
- Measurements at 65 km/hr (40 mph) with water depth of 0.25 mm

Transport Canada Friction Testing

- Continuous Friction Measuring Equipment (CFME)
 - Surface Friction Tester (SFT)
 - Benchmark for standard runway coefficient of friction
- Spot Measuring Devices (Decelerometers)
 - deceleration rate of vehicle braked to four wheel lock up
 - friction values available to pilots
 - surface conditions of snow, ice or compacted snow made available to pilots as CRFI (Canadian Runway Friction Index)

Runway Coefficient of Friction Profile Trace

International Friction Index (IFI)

- Developed by PIARC
- Based on ASTM E 1960

$$F(S) = F(60) \times e^{(\frac{60-S}{S_P})}$$

$S_P = 89.7*MPD + 14.2$

- F(S) = adjusted value of friction for a slip speed of S
- F(60) = measured friction value at slip speed of 60 km/hr

$$S_P$$
 = speed number, km/hr

- S = measurement speed, km/hr
- *MPD* = mean profile depth (macro-texture), mm
- Sp from CT Meter or high-speed profilers (MPD) or relationships between MPD and MTD from Sand Patch or Outflow Meter
- F(S) is friction value from tests at slip speed S

Guide for Pavement Friction (for highways)

- NCHRP Project 1-43
 - The "Guide for Pavement Friction" developed for adoption by AASHTO
 - Outlines a friction management and design program for highway pavement surfaces
 - Guide provides
 - information on aggregates and mixture types for long-lasting, high-quality friction surfaces
 - information on friction-testing methods, equipment, and indices
 - methods for establishing investigatory and intervention friction levels

Guide for Pavement Friction (for highways)

- Pavement Friction Basics
 - Importance of Pavement Friction
 - Pavement Friction Principles
- Pavement Friction Management
 - Developing Pavement Friction Management Policies
 - Establishing the Pavement Friction Management Program
- Pavement Friction Design
 - Developing Friction Design Policies
 - Project-level Design Guidelines

Friction Management (for highways)

Systematic approach to measuring/monitoring friction and crash rates, identifying surfaces in need of remediation, and planning/budgeting for treatments and reconstruction

- Key Components
 - Network definition
 - Network-level data collection
 - Network-level data analysis
 - Adequate monitoring of friction and crashes
 - Detailed site investigation
 - Selection and prioritization of short and long term restoration treatments

Friction Management (for highways)

- Two threshold levels of friction:
 - *Investigatory* calls for detailed site investigation to determine need for remedial action; actions are:
 - Erect warning signs
 - More frequent testing
 - Further analysis of friction and crash data
 - Short-term restoration treatment
 - *Intervention* Remedial action required; actions are:
 - Immediate restoration treatment
 - Erect warning signs
 - Program treatment in maintenance or construction work plan

NCHRP 1-43

Defining Levels

Pavement Age, years

- Plot friction deterioration curve (for a specific friction demand category)
- Plot corresponding crash rates curve
- Set intervention level at significant increase in crash rates

NCHRP 1-43

Network-Level Friction Design

Aggregate testing

- Recommended tests that help characterize aggregate frictional (micro-texture) properties
- Basic test criteria for discerning friction quality of aggregates
- Asphalt mix types and concrete texturing methods
 - Typical macro-texture depths
- Friction design categories
 - Matching aggregate sources and mix type/texturing techniques

Aggregate Properties

- Coarse aggregate controls the friction properties of asphalt mixes
- Fine aggregate controls the frictional properties of concrete mixes
- Mineralogical and Petrographic Properties
 - Aggregate composition/structure and mineral hardness
- Physical and Geometrical properties
 - Angularity, shape, and texture
- Mechanical Properties
 - Abrasion/wear resistance
 - Polish characteristics
 - Durability Properties
 - Soundness

NCHRP 1-43

Aggregate Mineralogy

- Hard, strongly bonded, interlocking mineral crystals (coarse grains) embedded in a matrix of softer minerals
- Differences in grain size and hardness constantly renew abrasive surface because of differential wear rates
 - Mohs scratch hardness test for determining mineral hardness
 - Mohs hardness > 6 resists wear
 - Mohs hardness of 3 to 6 resists polishing but wears quickly

Project Level Friction Design

- Project level design guidelines
 - Step 1 Determine design friction level
 - Step 2 Select aggregates (micro-texture)
 - Step 3 Establish surface mix types and/or texturing techniques (macro-texture)
 - Use IFI equation to identify combination(s) of aggregate and mix type/texturing technique that satisfy design friction level
 - Step 4 Develop construction specifications
 - Step 5 Formulate design strategies

Transport Canada - Runway Friction Standards

Corrective Action	Runway Average COF less than		
Shall Be Planned (Investigatory)	0.60		
Shall Be Taken (Intervention)	0.50		
Corrective Action	Runway 100 Metre Section Avg. COF less than		
Shall Be Planned (Investigatory)	0.40		
Shall Be Taken (Intervention)	0.20		

Department of National Defence -Runway Friction Standards

GripTester	Action	
Friction Value		
< 0.41 to < 0.60	Remedial work scheduled (Investigatory)	
< 0.40	Remedial work required (Intervention)	

Recommended Textures for Friction

PCC Surfaces

- 1. Transverse grooved (with quality aggregate)
- 2. Transverse or skewed tining
- 3. Diamond grinding
- 4. Longitudinal tining
- AC Surfaces
 - 1. Aggregate type dictates texture/friction
 - 2. Open-textured friction course (PFC)
 - 3. Gap-graded mixes (SMA, NovaChip)
 - 4. Grooving for Macrotexture

For more information:

Jim W. Hall, Jr. Applied Research Associates, Inc. 112 Monument Place Vicksburg, MS 39180 601-629-6165

jhall@ara.com

Expanding the Realm of Possibility