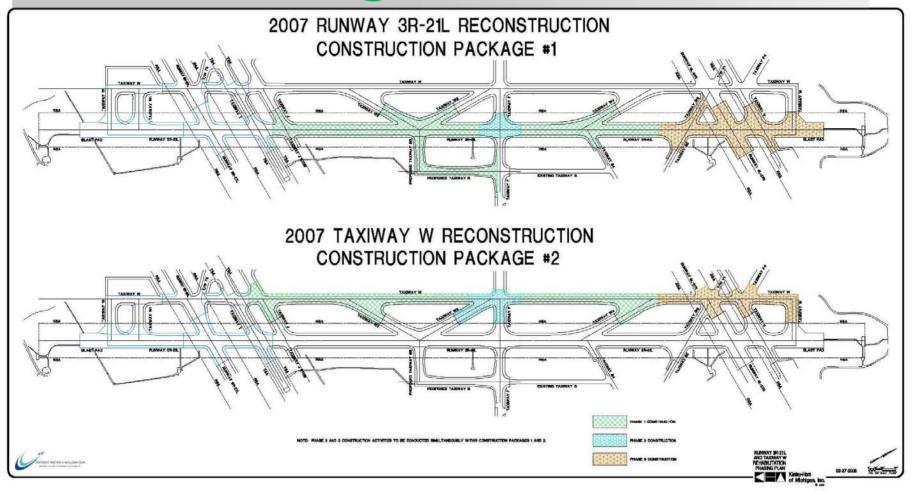
Best Practices in Airfield Concrete Pavement Design and Construction



CAPTG Workshop Calgary, Alberta

Gary L. Mitchell, P.E. Director of Airports and Pavement Technology

Planning for Construction Design Phase

Expectations

- Desired Characteristics
 - strength
 - durability
 - workability
- Which is better?
 - A well-built poorly designed pavement
 - A well-designed poorly built pavement

Planning Considerations:

- Coordination with stakeholders
- Identify Key Personnel
- Eliminate the Unknowns
 - Geotechnical

Geotechnical

Planning Considerations:

- Coordination with stakeholders
- Identify Key Personnel
- Eliminate the Unknowns
 - Geotechnical
 - Utilities

Utilities

Planning Considerations:

- Coordination with stakeholders
- Identify Key Personnel
- Eliminate the Unknowns
 - Geotechnical
 - Utilities
 - Weather

Weather

Procurement and Contracts

Deliver Options Require Minimum Qualifications Pre-Qualify Bidders Early Early Procurement of Long Lead Items Early NTP Set Aside Funding for Contingencies Bonus for Early or "on-time" Completion

Phasing and Scheduling

Time of Year/Week/Day Minimize the Number of Phases **Overlap Phases Alternate Facilities Consider Wind Direction** Partial Use of Runway/Taxiway Affects on Other Work 10 vs. 1

Design Considerations

Alternative Designs (Pvmt. Section) High-Early Strength Pavement "What If" Contingencies

Critical Airport PCCP Design

Features

- Subgrade support uniformity & stability
- Base and subbase (uniformity, stability & drainage provisions)
- Slab thickness
- Concrete properties (uniformity, workability, strength, & durability)
- Jointing details (layout, load transfer, & sealing)

Planning for Construction Construction Phase

USCIDE OFFICE

Quality Concrete

Quality is not about Strength

- Quality is not about proper air content
- Quality is not about "slump" of plastic concrete
- Quality is not about 100% Inspection

Safe, durable, free of defects

Workability

Summary - Cost of Poor Quality

- For airport owner
 - Operational delays & loss of revenues
 - Cost of claims (litigation)
 - Reduced service life
- For contractor
 - Corrective measures
 - Partial payments
 - Cost of claims (litigation)
 - Liquidated damages

Variability

- Inherent part of any construction process.
- Sources of construction variability
 - Material
 - Process
 - Testing (precision and bias)
- Negative impact on the property being measured.

Understand the magnitude of the different sources of variability and attempt to reduce each type of variability.

GUIDELINES FOR REASONABLE LEVELS OF CONSTRUCTION VARIABILITY

(In terms of acceptable standard deviation)

- Subgrade Density (standard Proctor test): 1 to 3 lb/cu. ft (for uniform subgrade type)
- Base/Subbase Density (modified proctor test): 1 to 3 lb/cu.
- Concrete Thickness: 0.25 to 0.50 in.
- Concrete Flexural Strength (650 psi concrete): 40 to 60 psi
- Concrete fc (4,000 psi concrete): 300 to 500 psi
- Concrete Air Void (6% air void concrete): 0.5 to 1.0 %
- Pavement Smoothness ?????
- Grade/straight edge: 0.2 to 0.3 in.
 Higher levels of variability may indicate that the construction process is not under control or testing procedures are marginal

Role of Construction Specifications

Establish the acceptable parameters

- Civilian: Based on FAA AC150/5370-10A
- Military: 2003 Unified Facilities Criteria document
- May be prescriptive and/or end-result based
- Provide guidance/requirements for:
 - Materials
 - Construction methods
 - Methods of measurement for compliance with specs
 - Testing requirements
 - Basis of payment

Pre-Bid Activities

- Project overview
- Administrative/contractual details
- Construction scheduling & phasing
- Contractor's access to site & staging area
- Addendums to plans & specifications, if any
- Detailed review of project scope of work
- Bidder's questions
- Site visit

(THIS IS THE TIME TO RESOLVE ANY QUESTIONS/CONCERNS OF THE CONTRACTOR)

Partnering

 A joint meeting between QC and QA reps before construction starts

- Review project requirements
- Review action and suspension limits
- Identify & clarify gaps and ambiguous items
- Review handling of non-conforming test results
- Review chain of command for decision making
- Establish QA/QC data management & data review plan
- Designer, Owner, Program Manager, Contractor

Construction Logistics

- Readiness of all operations
- Concrete plant setup & readiness
- Haul roads availability
- Availability of crews, equipment, & materials
- Subcontractor readiness
- Construction and airport traffic management
- Concrete placement needs (rate of placement)
- Electrical items needs
- QA/QC requirements & backup testing equipment
- Project phasing, if any

Opening to Traffic Issues

Typically construction related and not aircraft traffic related.

- Develop specific criteria
 - typical construction equipment
 - different concrete pavement thickness and
 - for edge and interior loading.
- Consider trade-offs between
 - higher strength requirement and
 - extra thickness
 - Optional base type

Develop alternate designs for fast track areas.

Lead Time – ASR & F-T Testing

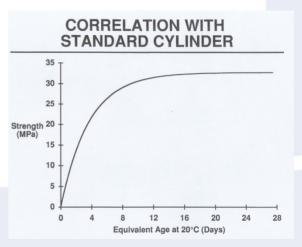
- ASTM C 1260 (ASR) 16 days for testing.
- ASTM C 1293 (ASR) 1 year to test aggregate for potential reactivity; 2 years to test effectiveness of mitigation measures.
- ASTM C 666 (F-T) 2 to 3 months.
- Modified ASTM C 1260

Notes:

- 1. About 60 days is available from contract award to start of work, so aggregate acceptance needs to be done within that time or before award.
- 2. ASTM C 1260 can be used to test the effectiveness of mitigation measures. Several combinations of cementitious materials can be tested simultaneously.

Acceptance Criteria

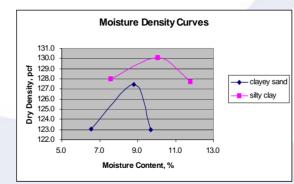
- (Slump and air content) *
- Flexural strength
- Thickness
- Smoothness
- Grade (lateral & vertical deviations)
- Edge slump
- Dowel bar alignment


Test Strip

Used to evaluate concrete batching, transporting, placement, finishing, curing & QA/QC

- Photos of acceptable and unacceptable sawcuts
- Establish/validate maturity data or NDT for sawcutting

Subgrade Issues


- A critical construction item
 - For long-term pavement performance
 - For construction platform
- For difficult soil conditions, consult geotechnical engineer experienced in local soils
- Areas of concern
 - Variability of soils
 - Soils exhibiting construction-time problems may affect fast track timetable
 - Swelling & frost susceptible soils
 - Drainage requirements

(If subgrade is not compacted well, then base/subbase cannot be compacted well)

Subgrade Issues

- Proper Compaction
 - Assess moisture sensitivity of subgrade material
- For difficult soils, consider
 - Replacement with better fill material
 - Subgrade modification with lime or cement
- Grade tolerances ensure correct grade

Subgrade Stabilization

Stabilize subgrade to

- Improve low strength soil (CBR<5)</p>
- Reduce swelling potential
- Improve construction conditions
- Methods
 - Lime stabilization
 - Cement stabilization

Proof-Rolling – good practice (For Stabilized ?)

Subbase Issues

To protect subgrade from frost and to provide drainage above the subgrade

- Subbase granular (CBR = 20 to 100)
 - Limit passing #200 to 3 to 5 % (frost areas)
 - Develop moisture-density relationships
 - Moisture control is key to compaction

 Grade tolerance important – use auto-trimmers for larger projects

Stabilized Bases

Stabilized bases – CTB, LCB (econocrete), ATB, PATB

> Strength issue for CTB/LCB – specify min/max values

 Base stiffness affects pavement performance

 Potential for random cracking increases

Stabilized Bases - CTB

≻CTB

Mixed in a central mixing plant

•7-day fc = 750 psi

- Pass F-T durability test for freezing environments
- Compact mix within 60 minutes of mixing
- Achieve a density of 97 to 98% of maximum
- Minimize no. of construction joints
- CTM must be cured usually with an asphalt emulsion
 Protect seal during curing period

DO NOT PLACE CTB IF IT CANNOT BE COVERED WITH THE PAVEMENT IN A FREEZING ENVIRONMENT. IF BASE MUST BE LEFT EXPOSED, IT SHOULD BE COVERED WITH SOIL TO PROTECT THE LAYER.

Base Tolerances

- Enhance pavement performance
- Minimize loss of concrete
- Minimize/eliminate pavement thickness PWL penalties
- Enhance pavement smoothness

Base - Drainage Layers

To use or not to use?

- Military designs typically require use of a drainage layer – typically 4 to 6 in. thick
- Unstabilized layers should be avoided
- PATB most commonly specified
 - Use stabilized base under PATB
- Understand effect on "window of joint sawing opportunity" if permeable base is used

(Note: stability is more important than porosity – very high drainability is not necessary)

Concrete Plant Checklist

- Foundation of stockpiles stable/well drained
- Stockpiles minimize segregation, contamination
- Aggregate moisture content control
- Bins minimize intermingling of particles

Slipform Pavers

Self propelled with two or four tracks

- Weight > 2,000 lb/ft width
- Variable speed hydraulically controlled internal vibrators
- Can carry a head of concrete in front of screed
 Continuous auger/plow pan to distribute concrete
 Finishing attachments

Bridge Deck Pavers

Truss system with suspended screw auger to spread concrete, oscillating vibrator & a roller
Ride on forms or self propelled wheels
One or two vibrators that move transversely
Do not carry a head of concrete
Weigh < 1,000 lb/ft width

Light Weight Finishing Machines

- Truss screed or roller screed
- Typically used for thin pavements or non-critical small areas
- Requires manual strike-off, manual vibration, and considerable bullfloating behind screed
- Excessive mortar at surface = poor air void system

Manual Paving

Labor intensiveUsed for small areas only

Critical Factors for Concrete Paving

- A good concrete mixture
- A good grade & trackline for paving
- Stringline management
- Continuous supply of concrete to paver
- Consistent concrete workability
- Well maintained paving equipment
- Proper operation of paving equipment
- Controlled density of concrete just the right vibration & finishing
- A skilled and dedicated crew

String-line Management

- Important for final surface smoothness
- Provides accurate reference for elevation and alignment control of all grade operations
- Stakes < 25 ft
- Stringless Pavers?

STRINGLINE AIDS •Use rigid stakes •Use quality line No perceptible sagging Eyeball for staking errors Re-survey staking errors Monitor & maintain line

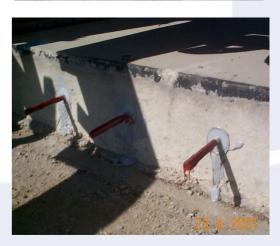
Concrete Placement

- Deposit concrete as close to paver as possible
- Avoid stop & go operation
- Maintain uniform speed
- Maintain uniform head
- Manage/monitor vibration
 Check for vibrator trails
- Maintain steady concrete delivery
 - Number of trucks
- Proper distribution

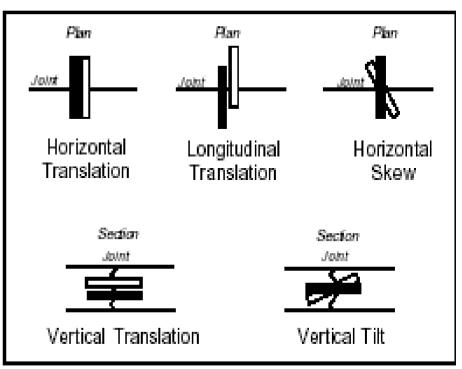


Concrete Placement Issues

- Proper vibration effort
 - Consolidation Control
 - Provide surface fines for a tight finish
- Concrete dumping


- In front of paver better can control control concrete head better, but dowel basket caution
- Side loading belt placer or spreader
- No water addition
- Voids along slipformed sides

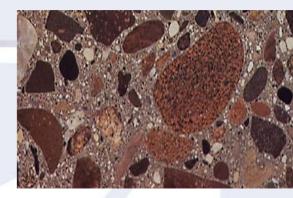
Dowel Bar Installation Transverse joints Pre-positioned using baskets Placed using DBIs Longitudinal joints Drilled & grouted in hardened concrete DO NOT USE INJECTORS Plastic Inserts



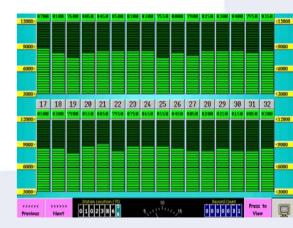
Dowel Bar Misalignment

Type of Misalignment	Effect on Spalling	Cracking	Load Transfer
Horizontal Translation		_	yes
Longitudinal Translation	n — I		yes
Vertical Translation	yes		yes
Horizontal Skew	yes	yes	yes
Vertical Tilt	yes	yes	yes

Categories of dowel misalignment are illustrated below.



Misalignment categories.



Concrete Consolidation

Inadequate consolidation Lower in-place concrete strength Honey-combing >Over-consolidation Poor air void system Less durable concrete Monitor vibration effort regularly vibrator smart system recommended – continuous monitoring

Poor Consolidation

Finishing Operations

Minimal hand finishing – do not over-finish
 Longer straight edges = smoother surface
 Little if any water added to facilitate finishing – if used, it should be fogged, not sprayed
 PCCP smoothness & surface durability depends on skill of finishers

Finishing Operations

Finishing needs are minimized by

- A workable mixture
- Proper paving equipment operation

Excessive hand finishing will work water to the surface

Concrete Curing

- Maintain adequate moisture & temperature regimes in freshly placed concrete
- Inadequate curing
 - Excessive moisture loss at surface => plastic shrinkage cracking
 - Weak surface durability problems
 - Excessive slab warping
- Timely curing behind paver

Paving Around In-Pavement Structures

- Lights, hydrant pits, utility manholes & drainage structures (trenches)
- Properly planned for and executed consider during design phase
- For light cans, methods include
 - Blockouts
 - Split can & coring

Paving Around In-Pavement Structures

- Design layout minimize interference with joints
- Account for expansion
 - Use isolation joints at/around in-place structures
 - Stiffen trench drain walls to resist expansion forces

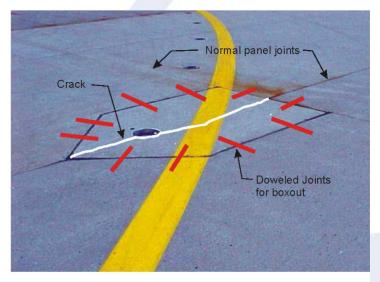


Figure 3.2 - Defective Boxout - Doweled Joints All Sides.

Hot-Weather Concreting

- Applicable when air temp. > 77 F for 3 days
- Potential problems
 - Rapid slump loss; Reduced air content
 - Premature stiffening; Plastic shrinkage cracking
 - Thermal cracking
- Use of less cement & more supplementary cementing materials (slag, Class F FA, etc)
 - Reduce heat of hydration
 - Class C FA not recommended
- Adjust admixture dosage

Cold-Weather Concreting

➤When daily temp. < 40 F for 3 days</p>

Potential problems

Delayed set time

Slower rate of strength gain

Delay in saw-cutting – potential for cracking

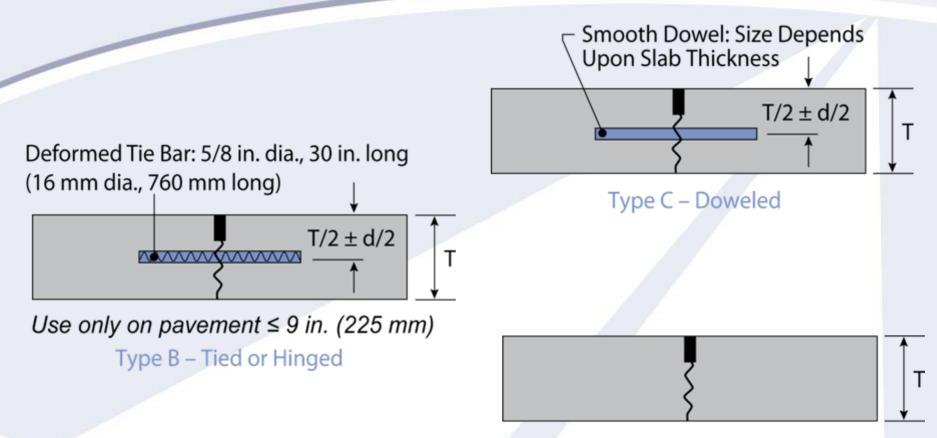
Maintain concrete temp. > 50 F for > 72 hours

Use more cement & less slow-reacting supplementary cementing materials

Joint sawing & opening to traffic may be delayed
 Verify in-place strength gain using maturity meter, cores or
 NDT before opening to traffic

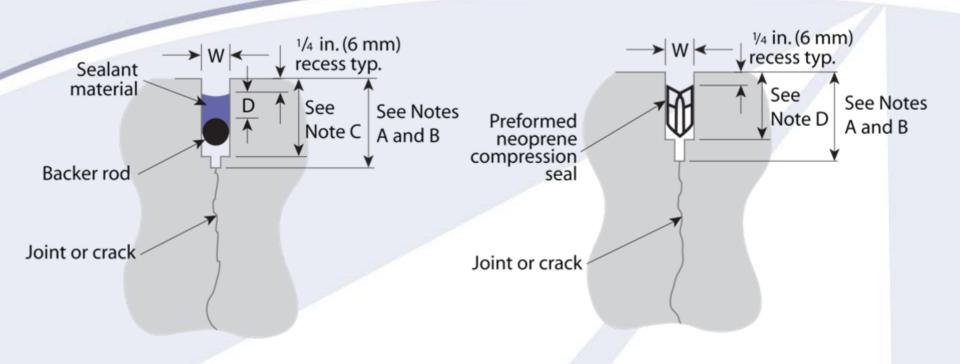
Protection of Concrete Against Rain

- Establish procedures to follow in case of impending rain
 - Stop paving operation ASAP
 - Cover freshly placed concrete
 - Do not remove excess water before covering
- Damage due to rain
 - Surface damage wash away of paste
 - Rapid cooling potential for cracking & greater slab curling
- Evaluate rain damage by examining & testing core samples – effect on durability



Joint Sawing & Sealing

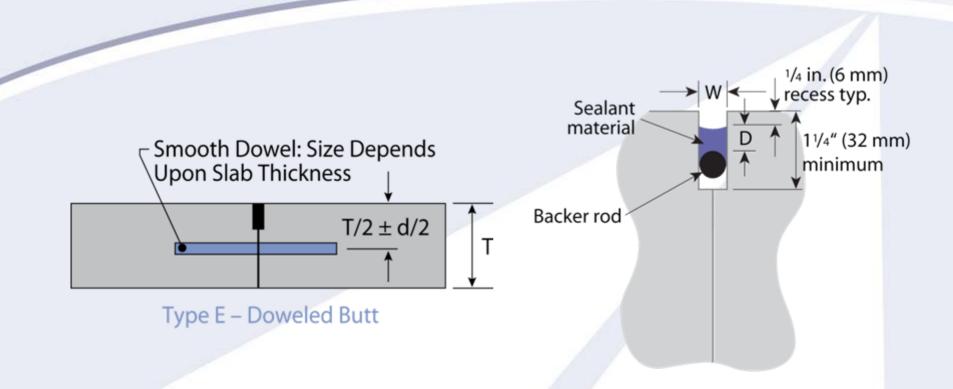
- Joint sawing & sealing is an art & not an exact science
- Requires experienced crew
- Sawing and sealing operation effectiveness
 - Understand window of opportunity
 - Understand sawing process
 - Blade type & speed of sawing vs. aggregate type
 - Maintaining a clean reservoir
 - Correctly installing sealant material


Contraction Joints

Type D – Undoweled or Dummy

 Note: Use an initial sawcut depth of T/4 on unstabilized (granular) subbases and T/3 on stabilized subbases.

Contraction Joints



- Notes:
 - A Initial cut to a depth of T/4 or T/3 as required for conventional sawing.
 - B Initial cut to a depth of 1.25 in. (32 mm) minimum for early-entry sawing.
 - C As required to accommodate sealant and backer rod. (May be deeper than initial sawcut in case of early-entry sawing).
 - D As required by the manufacturer.

DBI Method for Dowels

Construction Joints

• Typical D/W ratios for poured sealants:

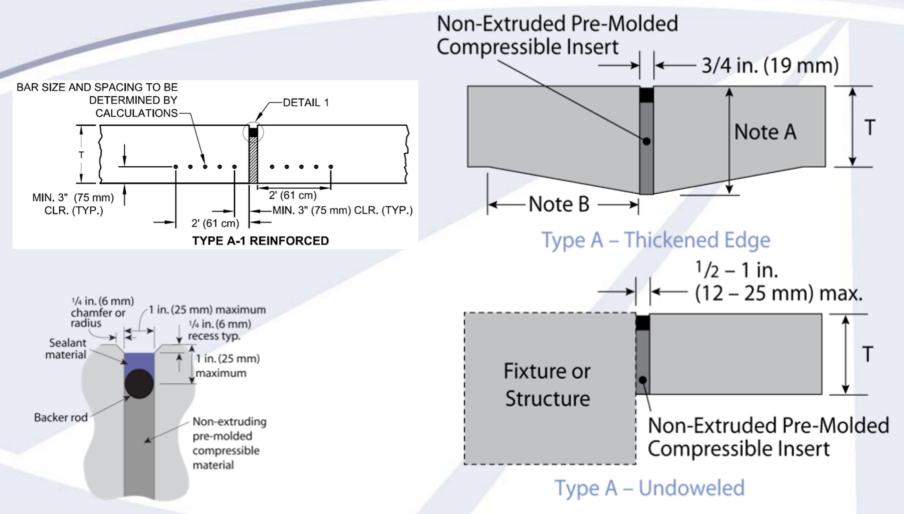
- 1 for hot-poured sealant;
- 0.5 for silicone sealant and two-component cold poured material.

Airport Dowel Dimensions

Joint Steel For Rigid Pavement Dowels

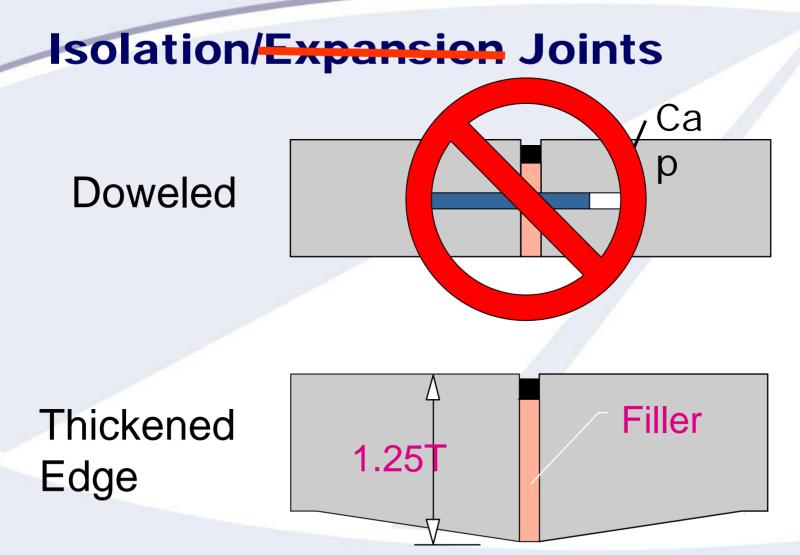
DIMENSIONS AND SPACING OF STEEL DOWELS

Thickness of Slab	Diameter	Length	Spacing
6-7 in (152-178 mm)	³ ⁄ ₄ in ¹ (20 mm)	18 in (460 mm)	12 in (305 mm)
7.5-12 in (191-305 mm)	1 in ¹ (25 mm)	19 in (480 mm)	12 in (305 mm)
12.5-16 in (318-406 mm)	1 ¼ in¹ (30 mm)	20 in (510 mm)	15 in (380 mm)
16.5-20 in (419-58 mm)	1 ½ in¹ (40 mm)	20 in (510 mm)	18 in (460 m)
20.5-24 in (521-610 mm)	2 in ¹ (50 mm)	24 in (610 mm)	18 in (460 mm)


¹Dowels noted may be solid bar or high-strength pipe. High-strength pipe dowels must be plugged on each end with a tight-fitting plastic cap or mortar mix.

Isolation Joints

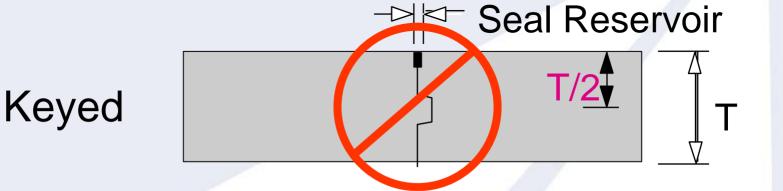
 Separate pavement segments of dissimilar movement (axis)
 use bird's eye view


- Where future pavement might be expected
- At Pavement Penetrations

Isolation Joints

- Note A: 1.25 T to nearest 1 in. (25 mm) but at least T + 2 in. (50 mm).
- Note B: To nearest joint; 10 ft (3 m) minimum.

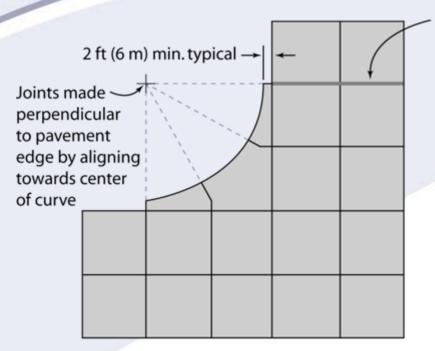
Terminology Change

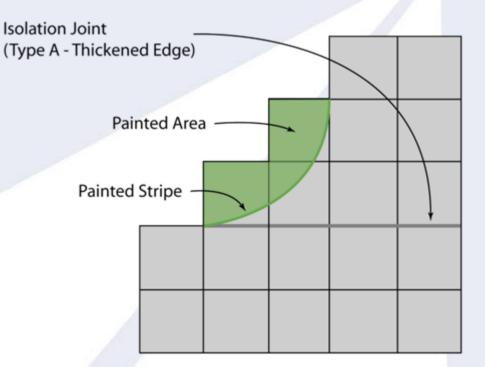


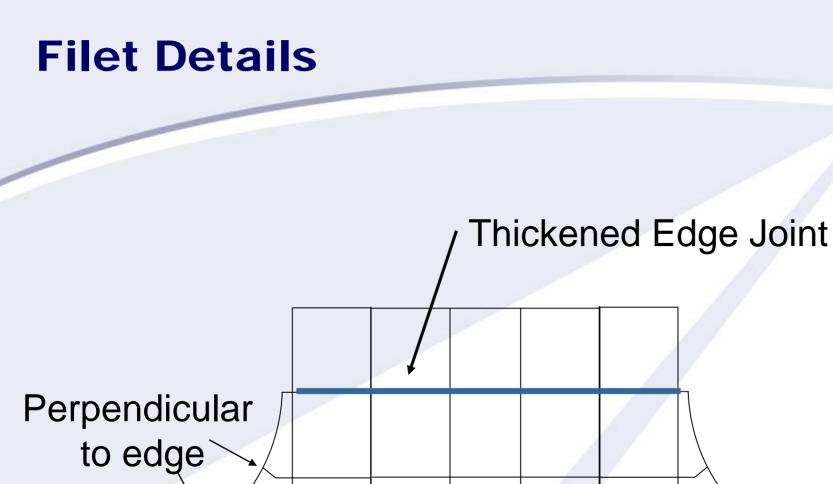
Where to Isolate...

Different Movement Axis

Construction Joint Details


FAA AC/150-5320-6E – Detail has been removed


Bad Male Keyways


Filet Layout Options

Option 1 - Constructed Fillets (shown with optional isolation joint location)

Option 2 - Full Panels with Painted Fillet Stripe (shown with typical isolation joint location)

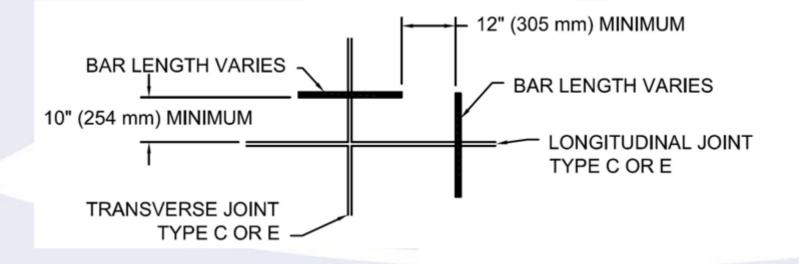
2 ft

Odd-shaped Panels in Filets

Add steel reinforcement (mesh) 0.05% by cross-section in both directions minimum

Fillet Details

Poor Practices


Don't bring a joint to the edge of pavement on an angle

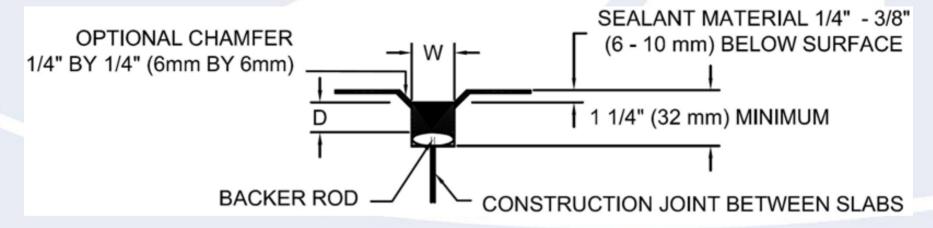


Rigid Pavement Design – Details

Rigid Pavement Joint Types and Details

Dowel Bar Spacing at Slab Corner

Don't place bars too close together ! Don't drill a dowel hole into another joint face



Rigid Pavement Design – Details

Rigid Pavement Joint Types and Details

- Beveled Joint Detail
 - Intended to reduce chipping and spalling attributed to snow plows

FAA P-501 Issues

- ASTM C 33 Contradictions (FM)
- P-501 does not directly address concrete workability (slump)
- Attempts to regulate workability by adjusting equipment
- Conflicting Directions to Contractor (e.g. finishing)
- Limits latents to 1/8 inch (no resolution)
- Others?

Concrete Mix Issues

- Concrete quality
 - aggregates quality
 - paste quality
 - bond between the two
- Paste quality => amount of water & admixtures
- Key properties of concrete
 - Workability easily placed, consolidated, finished
 - Strength required strength at desired time
 - Durability long term durability under service conditions

Defining Workability

Component	Placement	Consolidation	Finish
Aggregates			
Coarse	С	С	Μ
Fine	Μ	Μ	С
Cement		S	\mathbf{M}
Water	С	С	С
Admixtures			
Air Entraining	\mathbf{M}	Μ	S
Mineral	\mathbf{M}	Μ	\mathbf{M}
Chemical	С	С	S

Cement

- Conform to ASTM C 150 "Standard Specification for Portland Cement"
- $C_3 S < 56\%$
- Alkalies < 0.75%
- Types I II III (slag –be careful)
- 564 pcy Portland cement only
- 517 pcy with pozzalanic materials

Cement Factor

Characteristics

- More Cement Means Higher Strength
- Fine Cement Means Earlier Strength
- Low W/C Means Higher Strength
- High Cement Factor for Higher-Early

Offsets

•

•

Higher Water Demand

- Needs More Water (?)
- More Mixing Time
- Smaller Aggregates and More Air

Mineral Admixture

Fly Ash Class F - >15% and < 25% Class C – be careful (chemical analysis)

Chemical Admixture

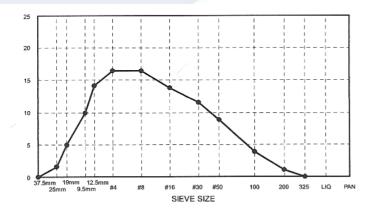
Air entraining Set-retarding Accelerating Water reducing Must be compatible with other components

Mineral Admixtures

Flyash

- Improves Durability
- Increases Water Demand
- Increases AEA
- Sand Reduction
- Class C contains calcium
- Hot ↑ Cold ↓

• GGBFS


- Cementitious
- Improves Durability
- Improves Workability
- No Bleed Water
- Stiff Mix
- Sensitive to Vibration
- Saw Cutting Critical

Combined Aggregate Grading

Proportioned for:
Workability
Finishibility

Percent Combined Aggregate Retain Graph

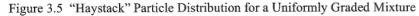
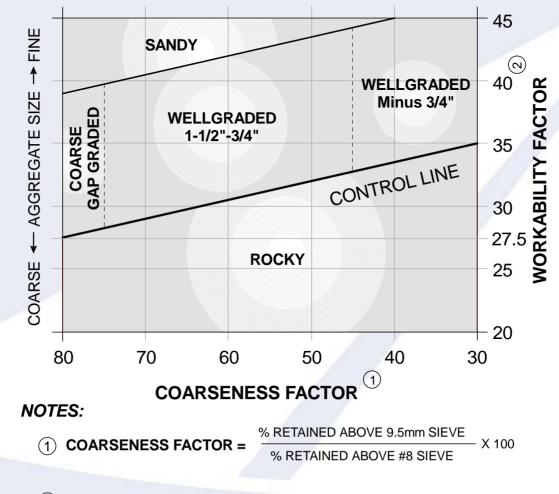



Figure 3.1 Percent Combined Aggregate Retained

USAF Constructability Chart

(2) WORKABILITY FACTOR = % PASSING #8

Aggregate Proportioning Guide

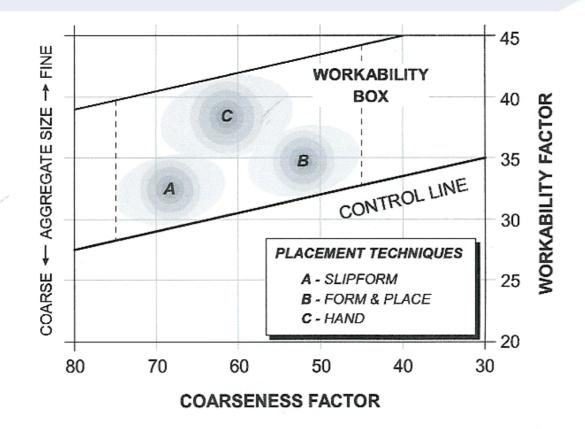
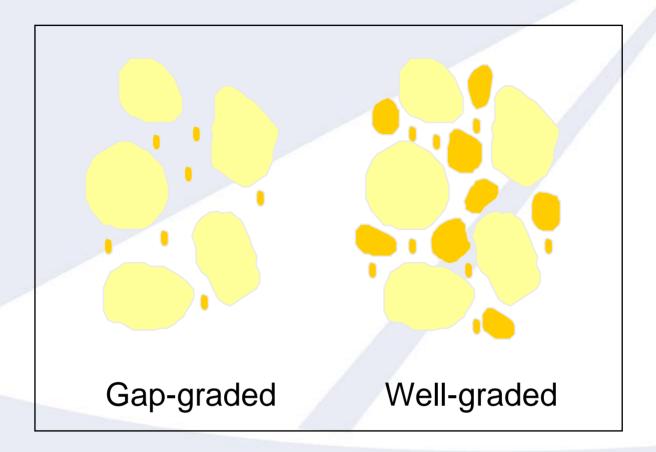



Figure 3.3 Workability Box Within Aggregate Proportioning Guide

Aggregate Grading (Optimize)

THANK YOU!

Please contact Gary L. Mitchell with questions or comments: gmitchell@acpa.org