SUSTAINABLE ASPHALT MIXES FOR AIRFIELDS

JA.

2011 CAPTG Workshop V. Aurilio P. Eng. Principal, DBA Engineering Ltd.

Airfield Pavements Challenges

- FOD Concerns (for Jets)
 Loading Conditions
 - Gross weights
 - Tire pressures
- Lack of Kneading from Traffic

The majority of airfield pavement is <u>very infrequently</u> directly loaded by a tire. Consequently, this lack of kneading action accelerates "Block Cracking" as the pavement ages (becomes oxidized). Deterioration of Airfield Pavements Can Lead to Foreign Object Damage (FOD) of Jet Engines

C-141B Max Gross Weight: 325,000 lbs Main Gear Tire Pressure: 190 psi

F-16D Max Gross Weight: 37,500 lbs, but <u>285 PSI</u> Tire Pressure on Main Gear

Raytheon King Air 200: Max Wt 12,500 lbs Tire Pressure: 150 psi

Why Recycle Asphalt?

 Three key requirements must be satisfied for asphalt pavement recycling to be successful.

Recycled asphalt pavements must:

- be cost effective,
- be environmentally responsible, and
- perform well.

Annual Recycling Tonnage

States that Permit more than 25% RAP

States that Use More than 20% RAP in HMA Layers

Benefits of Recycling

- Reduction in construction costs.
- Less disposal materials.
- Reduced transportation cost.
- Conservation of aggregates and binders.
- Conservation of energy.
- Preservation of environment (reduction in toxic and greenhouse gas emissions).

What Do We Know Recycling Asphalt?

- RAP has been successfully used in Ontario since the late 70's with good performance...
- We collectively want to use RAP?
- There's consensus that we have to do something to maintain quality (performance)
- We all share the same concerns so really we have no choice - we have to do it right!

Sustainable Asphalt Mixes

 Other recycled products are used in making asphalt pavement

- Scrap Tires
- Slag Aggregate
- Roofing Shingles etc.
- Newer technologies
 - Warm Mix Asphalt
 - Porous Asphalt
 - Improved Porous Friction (PFC) for Airfields

Today's Challenges

- High cost of fuel
- High cost of AC
- Greenhouse gas reductions
- O Carbon tax
- 'Green' Specifications
- HMA construction constraints
- Quality = Sustainability

Warm Mix Asphalt

Reduced Emissions Reduced Fumes Reduced Fuel Consumption Reduced Viscosity/Flow Enhancer Improved Workability Extend Paving Window Cold Weather Paving Increase Percentage of RAP

What Will Drive the Market?

• Emissions

- Worker Safety
- Increased use of RAP
- Density Specifications
- Higher Fuel Costs
- Extended Paving Window
- Cold Weather Paving
- O The Need to Improve Quality

Improved guidelines for RAP

 FHWA Mix ETG developed guidelines based upon consensus and limited testing (≤15%, 16-25, 25%+).

- NCHRP 9-12, "Incorporation of RAP in the Superpave System"
 - Guidelines for Incorporating RAP in Superpave
 - Use of RAP in Superpave: Technicians' Manual

Laydown & Placement

Good Construction Techniques

Dual Pavers

thinner surface layers are possible
better quality of the thin surface layer
better heat capacity
better compaction
better bond between top layers

KIRCHNER

US (FHWA) Perspective

- Probably the greatest single upfront cost saving measure available to US highway agencies today is increasing the use of RAP in the construction and rehabilitation of asphalt pavements.
- The majority of State DOTs use between 10 and 20% RAP, but have potential to use up to 30%.

 Contractors can effectively use RAP often and in high amounts with processing and production best practices.

"FHWA Recycled Materials Policy"

- FHWA recognizes need to increase the highway industry's overall use of recycled materials
- Engineering, Economic, and Environmental benefits
- First consideration in materials selection
- Initial review of engineering and environmental suitability
- Assessment of economic benefits should follow selection process
- Remove restrictions with no technical base

Where is the US Heading?

- Verify that complete or close to complete blending is not necessary for performance
- Alleviate recommendations for binder changes based on complete blending
- Replace extraction and recovery with performance testing
- Provide guidance for optimizing binder content in RAP mixes and determining RAP amount limits to mitigate fatigue and durability issues

Audrey Copeland et al - RAP ETG October 2010

Fatigue Cracking

Longitudinal Cracking

Block Cracking

Virgin performed significantly better than RAP

RAP performed significantly better than Virgin

Difference between Virgin and RAP insignificant

□ Virgin performed significantly better than RAP

■ RAP performed significantly better than Virgin

☑ Difference between Virgin and RAP insignificant

Summary of ongoing research in the US...

- Experience and data supports that when used properly - higher RAP contents provide similar or better performance than virgin mixes – however, plant and field data is sporadic.
- On-going research results indicate high RAP use is possible without adversely affecting performance.
- More studies are needed with emphasis on plant mixtures and field performance.

We're Not Alone...

- In the US, there's a national effort to increase RAP use
- Current research looking at high RAP contents i.e. greater than 25 %
- Main Goal:
 - "Encourage the use of recycled materials in the construction of highways to the maximum economical and practical extent possible with equal or improved performance" - FHWA

Partners

- AASHTO Subcommittee on Materials Recycling Task Force
- Asphalt Institute
- Asphalt Recycling and Reclaiming Association (ARRA)
- Asphalt Research Consortium (ARC)
- National Asphalt Pavement Association (NAPA)
- National Center for Asphalt Technology (NCAT)
- North Central Superpave Center (NCSC)
- Recycled Materials Resource Center (RMRC)

The Challenge

"When faced with a challenge, look for a way, not a way out." ---David Weatherford

The Solution...

You got to be careful if you don't know where you're going, because you might not get there - Yogi

The Ontario Study

Fundamental questions that need to be addressed include:

- How does RAP effect mix properties?
- What kind of testing is appropriate to predict long term field performance?
- Evaluate the impact that RAP has on two common Ontario mixes and provide some new guidelines on the usage of RAP

The Project Team

- Ontario Ministry of Transportation (Pamela Marks & Seyed Tabib)
- OHMPA (Sandy Brown & Fernando Magisano)
- CPATT (Dr. Susan Tighe, Co-Principal)
- DBA (V. Aurilio, Co-Principal)
- IRAP Additional Funding Support

PGAC Grade Selection

% RAP in Mix	Zone 1	Zone 2	Zone 3
0 to 20%	52-34	58-34	58-28

AAPTP Project 05-06 – Final Report Use of Reclaimed Asphalt Pavements (RAP) in Airfields HMA Pavements, July 2008

Table 26 Recommendations on the Use of RAP in HMA Mixes of Airfield Pavements.

		RAP Percentage Recovered RAP Grade					
Type of	Recommended Virgin Asphalt Binder						
Mix	Mix Grade		PGXX-16	PGXX-10 or higher			
Surface and Base Mix	No change in binder selection	< 20%	< 15%				
Base Mix	Select virgin binder one grade softer than normal (i.e. select a PG58-28 if a PG64-22 would normally be used)	20% - 25%	15% - 25%	-			
Surface and Base Mix	Follow recommendations from blending charts	L. 1		< 10%			

Table 27 AASHTO T283 Recommendations for RAP Containing Mixes.

Virgin target binder	Dry Tensile Strength at 77°F	Tensile Strength Ratio at 77°F	Notes			
PG64-XX or higher	Minimum 90 psi	Minimum 80%	 Severe climatic conditions might require multiple freeze- 			
PG58-XX or lower	Minimum 70 psi	Minimum 80%	 Consider anti-strip additive to improve long-term durability. 			

Provisional Scope

	Mix Design SP12.5		SP19								
				-							
	RAP Source	PG 58 -28	PG 58-34	PG 52-34	PG 52-40	PG 58 -28	PG 58-34	PG 52-34	PG 52-40		
RAP Content	0%	1	2	3	4	37	38	39	40	0% RAP	
		5	6	7	8	41	42	43	44	RAP A	
	13%	9	10	11	12	45	46	47	48	RAP B	
	20%	13	14	15	16	49	50	51	52	RAP A	
		17	18	19	20	53	54	55	56	RAP B	RAP Source
	20%/	21	22	23	24	57	58	59	60	RAP A	
	30%	25	26	27	28	61	62	63	64	RAP B	
		29	30	31	32	65	66	67	68	RAP A	
	4076	33	34	35	36	69	70	71	72	RAP B	

Performance Testing

Asphalt Mix Performance Tester (AMPT)

One Approach...

 Perform Dynamic Modulus Tests on Plant Produced Mixture
 Plant Mixed Condition
 Recover Binder, Test and Estimate Dynamic Modulus Using Predictive Model
 Fully Blended Condition
 Compare Measured and Estimated

Indirect Tensile Test

- Low temperature creep compliance test
 - 0, -10, -20°C
- Low temperature strength test -10°C
- Determine stiffness, strength, and critical cracking temperature, T_c

Low Temperature & Fatigue

Heavy Loads Payload up to: 150 metric tons

The Problem?

Looking south on Taxi A at AD

Performance=Sustainable!

And, That`s a RAP...