

expanding the realm of **POSSIBILITY**®

SWIFT 2014

EXTENDED SERVICE LIFE FOR AIRPORT PAVEMENTS

September 2014

Jim W. Hall, Jr., PE, PhD

Objective of Presentation

Discuss Issues Relating To Extended Pavement Life

How can pavement service life be extended beyond the current 20-year design life?

Items Related to Longer Pavement Life

- Design Thicknesses
- Subsurface Drainage
- Traffic Operations
- Climate

POSSIBILIT

- Durability (Quality of Materials)
- Plans and Specifications
- Construction Processes
- Quality Control/Quality Assurance
- Maintenance Practices

Concept of Longer Service Life

expanding the realm of POSSIBILITY

- Pavements deteriorate with time through development of a range of distresses
- Pavement life can be extended with proper maintenance
- Deterioration ultimately reaches a level of unacceptable serviceability

- Current FAA design is typically for a 20-year pavement life
- Some pavements last longer than 20 years while others fail prematurely
- What factors impact extended pavement service life?

Design Thickness

- Structural Thickness is Key to Providing Load Support
- What is Adequate Thickness for 40-Year Life?
 - Theoretical analysis with FAARFIELD
 - Performance Data from In-Service Pavements
 - May not require significant increase
- Design Models Must Represent Performance
- Design Inputs Clearly and Accurately Defined
- Non-Uniform Conditions
 Produce Failures

expanding the realm of POSSIBILITY

 Changes Due to Climate and Traffic

Design Thicknesses

Rigid Pavement Design Issues

- PCC Surface Layer Spreads Load Stresses
- > Tensile Strength of PCC Must Be Greater Than Applied Tensile

Stress

expanding the realm of POSSIBILITY

- Subgrade Support (over life expectancy)
- Tensile Strength of PCC
- Traffic Load Distribution (over design life)
- Load Transfer at Joints
- Climatic Factors

Design Thicknesses

Flexible Pavement Design Issues

- Structural Layers Distribute Load and Protect Subgrade (from shear failure)
- Layers Consecutively Stronger from Subgrade to Pavement Surface
- Design for Lowest Expected Subgrade Strength (soaked CBR?)
 - Subgrade Strength

expanding the realm o POSSIBILITY

- Traffic Load Distribution (over design life)
- Quality of Pavement Layers
- Climatic Factors

Geometrics of PCC Slabs

Joint Spacing Related to Cracking

- FAA Recommends Maximum of 20 ft Joint Spacing
- Performance function of climate, concrete aggregate type, slab thickness

Warping and Curling Stress

- Higher on Stiffer Substrates
- Higher Stresses on Larger Slabs
- Affected by Climatic Locale

Early Age Cracking

POSSIBIL IT

- Some Effect From Slab Dimensions
- Impacted by High Flexural Strength and Rapid Rate of Strength Gain
- Affected By Weather Condition During Construction
- Influenced By Type of Cementitious Materials

Joint Spacing Impacts Performance

Large Slabs May Result in Cracks That Impact Performance

expanding the realm of **POSSIBILITY**[®]

Joint Design and Load Transfer

Joint Design Determines Load Transfer

- Design typically assumes 75% load transfer
- Aggregate Interlock Reduced When Slabs Shrink (curing and cold weather)
- Shorter Joint Spacing Ensures Higher Load Transfer

Joint Types

expanding the realm of POSSIBILITY

- Construction Joints Typically Doweled
- Contraction Joints Doweled or Undoweled
- Expansion (Isolation) Joints

Doweled Joints – both directions?

- Military Airfields Dowel Only Longitudinal Joints on Runways and Taxiways
- Aggregate Interlock Adequate for Transverse Joints on Taxiways and Runways?

Joint Design and Load Transfer

Beveled Edges

expanding the realm of POSSIBILITY[®]

- Prevents Minor Edge Spalling (Sliver Spalls)
- Improves Joint Performance

Joint Sealant Selection

- Hot Poured
- Cold Poured
- Preformed
- Correct W/D Ratio for Sealant

Junctures Between AC and PCC

Subsurface Drainage

The old adage "water, water, and water" (Harry Cedergren)

POSSIBILIT

Subgrades naturally increase in moisture

- Reach approximately 85 to 90 percent saturation after 3 years
- Equilibrium moisture tends to be near Plastic Limit
- Free water can reduce subgrade support (to 100% saturation)
- Loss of subgrade support leads to structural distresses

Subsurface Drainage

Subsurface drainage systems remove free water

- Water infiltrates into pavement structure
- Design for permeability of 1,000 fpd

expanding the realm of **POSSIBILITY**[®]

- > Typical Design to Remove 85% Free Water in 24 Hours
- Separation Layer Prevents Migration of Subgrade Fines Into Drainage Layer
- No official FAA guidance on subsurface drainage

Traffic Impacts

Aircraft Variables

Aircraft Types

expanding the realm of POSSIBILITY

- Gross or Operating Loads
- Annual Operations

Traffic Distribution

- Operations on Each Airfield Feature
- Take-off and Landing Directions

Lateral Wander

Based on studies in 1970's

- Design for Actual Traffic
 - Expected Traffic Over Life of Feature
 - What Traffic after 20 Years?

Climate Impacts

Climatic Zones

expanding the realm of **POSSIBILITY**[®]

- Wet Freeze
- Wet No-Freeze
- Dry Freeze
- Dry No-Freeze
- Design for Freeze-Thaw (not well understood)
- Design Methodology Should
 Consider Impacts of Climate
 - Daily Temperature Differentials
 - Large Differentials Produce High Warping Stresses
 - Seasonal Variations in Structural Support
 - High Moisture During Spring Thaw

Temperature Differential, ⁰F.

Note: Load at LJ.

Durability of Materials and Mixes

Durability Related to Quality of Materials

- Likely Biggest Issue for Long-Term Performance
- Specifications Must Address Material Quality

Mix Designs

expanding the realm of POSSIBILITY

- Quality Mixes (PCC, AC, Stabilized Materials) Critical to Long-Term Performance
- Responsibility of Contractor versus Owner Developed Mix Design
- PG Grades and Polymer modified asphalts improve temperature susceptibility and increase shear strength of Asphalt Mixes
- Concrete Mix Designs for Workability and Coarseness
- Must Consider Alkali Silica Reaction and other Detrimental Reactions

Aggregate Sources versus Specifications

- Quarry with History of Quality Aggregate Production
- Quality Sand
- Limit Sand in Asphalt Mixes
- Coarse Aggregate Impacts Performance

Plans and Specifications

Plans Must Reflect the Design

POSSIBILIT

- Plans Show Contractor What is to be Constructed
 - Details and Dimensions Important for Clear Understanding
- Specifications Describe Requirements and Processes for All Aspects of Construction
- Plans and Specifications Must be Coordinated (not contradictory)

Construction

- Poor Construction Practices Major Cause of Early Distresses
- Variability versus Uniformity
 - Subgrade

expanding the realm of **POSSIBILITY**

- Material Quality
- PC and AC Mixes

Poor Practices (Workmanship)

- Hand finishing PCC Resulting in Scaling
- Segregation of Asphalt Mixes
- And the list goes on

Inadequate Equipment

- Mixing Plant Operations
- Laydown and Placement
- Finishing
- Vibrators
- ➢ Rollers
- And the list goes on.....
- Improved Specifications
- Warranties on Work

Quality Control/Quality Assurance

Contractor Responsible for Quality Control of Construction

- Contractor Quality Control (CQC) Plan
- Qualified QC Staff

expanding the realm of POSSIBILITY

- Qualified CQC laboratory
- Daily Reports on Production Quality

Owner Responsible for Quality Assurance

- Full-Time Inspection by Qualified Independent Source
- Sampling and Testing to Ensure Compliance with Specifications
- Survey Checks (Dimensions, locations, offsets, grade, etc)
- Coordination with Owner and Contractor

expanding the realm of **POSSIBILITY***

Contractor Boo - Boos

expanding the realm of **POSSIBILITY**®

Construction of Asphalt Pavement

 Mix Properties Critical
 Poor Compaction of Longitudinal Joints Results in Raveling & Cracking

expanding the realm of **POSSIBILITY**[®]

Light Fixtures and Drainage Structures

expanding the realm of **POSSIBILITY***

Effective Maintenance

Timely Maintenance Retards Rate of Deterioration

Rigid Pavements

expanding the realm of POSSIBILITY

- Timely Spall Repairs
- Effective Patching Materials
- Crack Sealing
- Joint Resealing
- Slab Replacements

Flexible Pavements

- Crack Seals
- Patches
- Mill and Overlay

Surface Characteristics

- Friction Rubber Removal, Polishing Aggregates
- Grooving
- Roughness

FAA PAVEMENT DESIGN STUDY

- FAA is committing \$35 million to improve pavement design procedures over the next 10 years
- Planned study projects include:
 - Extending Design Life to 40 Years for Airport Pavement
 - Semi-Accelerated Full-Scale Rigid Pavement Test
 - Validated Reflection Cracking Model for HMA Overlay Design
 - Failure Criteria for Top-Down Cracking in Rigid Airport Pavement
 - FAARFIELD-Based ACN/PCN Methodology
 - New LCCA Integrated Design Procedures

POSSIBIL IT

FAA 40-YEAR DESIGN STUDY

OBJECTIVE OF RESEARCH

expanding the realm of **POSSIBILITY**[®]

ARA

- Extend Design Life from current 20-years to 40-years
- Research to improve pavement performance at large hub airports

FAA 40-YEAR DESIGN STUDY

APPROACH

POSSIBILI

Select runways for performance data collection

- < 3 years of age; PCC and AC
- > 20 years of age; PCC and AC
- New runways for future performance monitoring
- Runways for historical data only
- Runways for both historical data and new field/laboratory testing
- Use the data to improve life cycle models

AC RUNWAYS SELECTED FOR DATA COLLECTION

Airport	Airnort Name	Runway	Pavement	Pavement	Field
Code		Kanway	Туре	Age, yrs	Tests
CMH	Port Columbus International	10L-28R	Flexible	>20	Yes
BOS	General Edward Lawrence Logan	04L-22R	Flexible	>20	Yes
СМН	Port Columbus International	10R-28L	Flexible	<3	Yes
GSO	Piedmont Triad International	5L-23R	Flexible	3	Yes
BWI	Baltimore–Washington	10-28	Flexible	>20	Yes
SFO	San Francisco International	10L & 10R	Flexible	>50	No
TUS	Tucson International	11L-29R	Flexible	>20	No
TUS	Tucson International	03-21	Flexible	<3	No
LGA	LaGuardia	4-22	Flexible	>20	No

expanding the realm of **POSSIBILITY**®

PCC RUNWAYS SELECTED FOR DATA COLLECTION

Airport Code	Airport Name	Runway	Pavement Type	Pavement Age, yrs	Field Tests
IAD	Washington Dulles	01R-19L	Rigid	>20	Yes
IND	Indianapolis International	5R-23L	Rigid	23	Yes
SEA	Seattle-Tacoma International	16R-34L	Rigid	<3	Yes
ORD	Chicago O'Hare International	10C-28C	Rigid	<1	Yes
IAD	Washington Dulles	01C-19C	Rigid	<3	No
IAH	Houston Intercontinental	9-27	Rigid	<3	No
SEA	Seattle-Tacoma International	16C-34C	Rigid	>20	No
LAX	Los Angeles International	6R-24L	Rigid	26	No
MCO	Orlando International	17R	Rigid	24	No

expanding the realm of **POSSIBILITY**®

HISTORICAL DATA COLLECTION

ORIGINAL DESIGN DATA

expanding the realm of POSSIBILITY

- o Design Reports
- o Geotechnical Investigation Reports
- Plans and Specifications Design

CONSTRUCTION DATA

- o Quality Control Test Data
- Mix Designs
- Material Types and Properties
- Subgrade Type and Strength

TRAFFIC DATA

- Aircraft Used in Original Design
- Current Aircraft Aircraft Types and Weights, Number of Operations, Take-off and Landing Directions

PAVEMENT MANAGEMENT/EVALUATION STUDIES AND DATABASES

- MicroPAVER Databases Converted To PaveAir
- Structural Evaluations
- Friction Measurements

MAINTENANCE RECORDS AND COSTS

- Maintenance activities, timing of maintenance, triggers for maintenance
- WEATHER/CLIMATE DATA

FIELD TESTING

DISTRESS SURVEYS

CORE SAMPLING

POSSIBILIT

- o 24 cores on AC pavement
- o 20 cores (6-inch) on PCC pavement
- o Beam samples of PCC Pavements (where feasible)

> HWD DEFLECTION TESTS

- HWD Loads of 15,000, 30,000, and 45,000 lbs
- Four Lines Along Runways at 20 ft and 50 ft (or 1st and 3rd slabs) each side of centerline
- o Joint Tests at Transverse and Longitudinal Joints on PCC Pavement

PROFILE/ROUGHNESS

- SurPro device
 - 5 Profile Lines Centerline and 10 ft and 17 ft Each Side
- FAA Pavement Profiler (for groove data)

COMBINED DATA FOR ASPHALT PAVEMENTS

expanding the realm of **POSSIBILITY**®

COMBINED DATA FOR CONCRETE PAVEMENTS

expanding the realm of **POSSIBILITY**®

LABORATORY TESTING

Tests in FAA Research Laboratory (and elsewhere)

• AC Samples

expanding the realm of POSSIBILITY

- Mixture Properties
 - Asphalt binder content
 - ✓ Aggregate Gradation
- Indirect Tensile Dynamic Modulus
- Indirect Tensile Strength
- Flow Test Number
- Asphalt Pavement Analyzer (APA)
- Hamburg Wheel Track

• PCC Samples

- Direct Tensile Strength
- Compressive Strength
- Flexural Beam Strength (where feasible)
- Coefficient of Thermal Expansion
- Petrographic Examination

MAINTENACE DATA

> PAVEMENT MAINTENANCE ON RUNWAYS

- Types of Maintenance Activities
- Frequency of Maintenance
- Annual Cost of Maintenance
- Trigger Factors for Maintenance Execution

RUBBER REMOVAL

Friction Tests

expanding the realm o POSSIBILITY

- Type of Rubber Removal Methods Used
- Costs of Rubber Removal

PRELIMINARY CONCLUSIONS

BASED ON LIMITED DATA PRESENTED:

- Major Hubs maintain runways pavements at PCI levels of 65 to 85
- Maintenance records not readily available; particularly for older runways
- > Asphalt runways reach PCI of 70 in 12 to 15 years
- Concrete runways reach PCI of 70 in 30 to 40 years
- > Asphalt pavements deteriorate at rate of 1.5 to 2.5 PCI points per year
- Concrete pavements deteriorate at rate of 0.5 to 1.2 PCI points per year
- Most distresses are materials and climate related

MORE DATA NEEDED TO DEVELOP SPECIFIC CONCLUSIONS

STATUS OF PROJECT

PHASES I AND II DATA COLLECTION AND FIELD TESTS COMPLETE

- PHASE III UNDERWAY (8 additional runways)
- PRELIMINARY ANALYSIS OF DATA COLLECTED

FURTHER DATA COLLECTION AND FIELD TESTS PLANNED

- o Complete Matrix Of Performance Variables
- o Climate, Traffic, Surface Condition, Concrete, Asphalt, Overlays, etc.
- o Groove Performance, Rubber Removal, Joint Spacing

Analysis

POSSIBILI

- Define failure
- o Identify key factors related to extended life

SUMMARY

Extended Service Life Can Be Achieved

Identify and Understand Critical Performance Parameters

- Design Aspects Thickness, Joints. and other Details
- Traffic Demands Current and Future
- Durability Material Quality, Mixes, Uniformity
- Climatic Impacts

POSSIBIL IT

- Quality Construction QC/QA
- Long-Life Airfield Pavements Require "Best Practices" in All Aspects of Design, Materials Selection, Formulation of Mixes, and Construction
- FAA Initiative for 40-Year Life Studying Performance Parameters from Runways Across the US
- FAA intends to modify design criteria to allow 40-year design of large hub airport runways

