Optimizing Concrete Pavement Design

Robert Rodden, PE

CONCRETE PAVEMENT

- Roads
- ...VS...
- Pneumatic tires
- Channelized traffic
- Design for fatigue
 - Cracking
 - Top-down
 - Bottom-up
 - Corner
 - Faulting
 - Roughness
- Concrete slabs... outside Concrete slabs...outside

- Runways
 - Pneumatic tires
 - Relatively channelized traffic
 - Design for fatigue
 - Cracking
 - Bottom-up in FAARFIELD
 - » Low LTE assumed
 - » High k-values common
 - Faulting?
 - Roughness?

"ALL SLABS [AND PAVEMENTS] CURL" JERRY HOLLAND, STRUCTURAL SERVICES INC.

CONCRETE SLAB DESIGN (PCA, WRI, COE)

• Curling / Warping

Newly Placed Concrete

(Slide courtesy of Jerry Holland, P.E. Structural Services, Inc.)

CONCRETE SLAB DESIGN (PCA, WRI, COE)

Curling / Warping

During and After Drying

ACI 360R-10: "GUIDE TO DESIGN SLABS-ON-GROUND"

"Generally accepted thickness design methods for unreinforced slabs-on-ground are:

- PCA method
- WRI method
- COE method
- Each of these methods, described in Chapter 1, seek to avoid live load-induced cracks through the provision of adequate slab cross section by using an <u>adequate factor of safety</u> against rupture".
- Same document addresses curl/warp, load transfer importance, etc. for slabs-on-ground
 - Yes, curl/warp is even important on INTERIOR slab-on-ground in controlled environmental conditions

CRACKING MODES IN JPCP: BOTTOM-UP

CRACKING MODES IN JPCP: TOP-DOWN LONGITUDINAL

CRACKING MODES IN JPCP: CORNER

FOR ROADWAY PAVEMENTS, PRIOR TO MODERN MODELS, WE "SIMPLIFIED"...

... size slabs per field performance data to reduce risk of "environmental" cracking

> This is an incomplete and risky approach! Ignores topdown!

WE'VE LEARNED A LOT IN THE LAST 50 YEARS!

- "Ambient effects on pavement during construction and throughout its design life have a significant effect on the magnitude of warping and curling in the pavement panels and, therefore, the stresses in the concrete under load."
- "After the estimation of traffic levels, the most influential factors in the design of concrete pavements are thickness; joint spacing, which also affects the magnitude of warping and curling; and joint detailing. <u>Compared to concrete material strength and subgrade/subbase</u> <u>support, the pavement thickness, joint spacing, and joint</u> <u>detailing have a far greater impact on the load-carrying</u> <u>capability of the pavement</u>."

ACI 330.2R-17, *Guide to the Design and Construction* of Concrete Site Paving for Industrial and Trucking Facilities

DR. MICHAEL DARTER, PE

Emeritus Professor of Civil and Environmental Engineering University of Illinois at Urbana Champaign

Principle Engineer Applied Research Associates, Inc.

Honorary Life Member International Society for Concrete Pavements

SPEAKING OF ONE MODERN DESIGN METHOD...

"This design can beat asphalt pavement by 20 percent first cost! No cracking or faulting has occurred on these designs."

- Dr. Mike Darter PE

"Observations of Short Slab Concrete Pavements designed with *OptiPave*™ in Chile," Dr. Michael Darter, April 2013

VEHICLE TECHNOLOGIES HAVE ADVANCED

LIKE OTHER ENGINEERING DISCIPLINES, PAVEMENTS LEVERAGE FINITE ELEMENT ANALYSES (FEA)

MANY ENGINEERS USE ONLY AASHTO 93, WHICH PRODUCES OUTDATED AND UNOPTIMIZED DESIGNS

- The Professional Engineer's (PE) exam by NCEES references these in its transportation design standards:
 - <u>AASHTO</u> Guide for Design of Pavement Structures (GDPS-4-M), 1993, and 1998 supplement, American Association of State Highway & Transportation Officials, Washington, DC.
 - Based on accelerated testing in one location from 1958-1960
 - Concrete design equations effectively unchanged since 1962
 - <u>AASHTO</u> <u>Mechanistic-Empirical Pavement Design Guide: A Manual of Practice, interim edition, July 2008</u>, American Association of State Highway & Transportation Officials, Washington, DC.
 - Based on decades of performance of >2,500 sections by DOTs across N.A.
 - Tens of millions of \$'s invested in this continuously improved framework
 - Included as a PE ref in the last two years; 99.9% of PEs don't know about it!

advancing licensure for engineers and surveyors

CONCRETE PAVEMENT DESIGN STANDARDS

Increasing Complexity = More Accurate Models & More <u>Optimization</u> Options

MODERN DESIGNS PREDICT WHAT MATTERS...

Design Method	Cracking	Faulting	IRI	Other	Curl?
AASHTO 1962-1993				Х	
ACPA StreetPave	BU	Х			
TCPavements OptiPave	BU, TD, C	Х	Х		Х
AASHTOWare Pavement ME	BU, TD, C	Х	Х		Х

Cracking Modes: BU = bottom-up | TD = top-down | C = corner

MODERN DESIGNS ALLOW FOCUS ON VALUE-ADDING DESIGN OPTIMIZATION VIA VARIABLES LIKE FIBERS

500 trucks/day, freeze-thaw climate, dowels, low support, and same inputs:

....AND LET YOU <u>OPTIMIZE</u> WHAT'S MOST IMPACTFUL

Design Method	Concrete Material Properties						
	Strength & Modulus	Unit Weight	СТЕ	SSA	Fiber	Joint Spacing	Edge Support
AASHTO 1962-1993	Х						/
ACPA StreetPave	Х				Х		Х
TCPavements OptiPave	Х	х	Х		Х	Х	Х
AASHTOWare Pavement ME	Х	Х	Х	Х	/	Х	х

PAVEMENT ME TOP 10 MOST-SENSITIVE INPUTS

- 1. Concrete Flexural Strength at 28-Days
- 2. Concrete Thickness
- 3. Surface Shortwave Absorptivity (SSA)
- 4. Joint Spacing Limit is 10 ft (3 m)
- 5. Concrete Modulus of Elasticity at 28-Days
- 6. Design Lane Width with a 14 ft (4.3 m) Widened Slab
- 7. Edge Support via Widened Slab
- 8. Concrete Thermal Conductivity
- 9. Concrete Coefficient of Thermal Expansion (CTE)
- 10. Concrete Unit Weight

... optimization options to reduce \$\$\$\$

... these are just the top 10 of LOTS

Project 1-47

Sensitivity Evaluation of MEPDG Performance Prediction

Final Report

ERATIVE HIGHWAY RESEARCH PROGRAM

MATCHING STRESSES IN OPTIPAVE™ VS. PAVEMENT ME

Slab Size = $12' \times 15'$ (3.7 m x 4.6 m)

Max Top Stress = 363 psi (2.5 MPa) **Pavement ME Design**

Slab Size = $6' \times 6'$ (1.8 m x 1.8 m)

OptiPave™ Design

Max Top Stress = 363 psi (2.5 MPa) Thickness = 6.3" (160 mm)

OptiPave was developed by Juan Pablo Covarrubias V. using MEPDG methods and models and in collaboration with Drs. Lev Khazanovich, Jeff Roesler, and Dan Zollinger

Thickness = 10" (250 mm)

PAVEMENT ME PROVES THE INTERDEPENDENCY OF THICKNESS AND JOINT SPACING...

DATA @ 10% SLABS CRACKED REPLOTTED

• Pavement ME

...A CLEAR TREND EXISTS...

---Pavement ME

...SAME INPUTS FOR OPTIPAVE...

-Pavement ME -OptiPave

... AND WE GET A COMPLETE VIEW OF THE SENSITIVITY OF JOINT SPACING ON SLAB THICKNESS

WHAT ABOUT AN AIRPLANE?

WE MODELED AN A380 IN ISLAB

MAXIMUM STRESSES

Bottom-up stresses higher, as FAARFIELD assumes.

DATA PIVOTED TO FOCUS ON JOINT SPACING

CAPACITY BEAM VS. SLAB TOP-DOWN VS. SLAB BOTTOM-UP

FACTOR OF SAFETY AGAINST CRACKING

RUCTION

Factor of Safety

MINIMUM FACTOR OF SAFETY ...AT LONGER JOINT SPACING, RISK OF TOP-DOWN

- FAARFIELD assumes bottom-up only
- AC 150/5320-6F recommendations for joint spacing per thickness on stabilized subbase are indicated in green cells to the right

Thickness, in.	Joint Spacing, ft	Which Controls?
8	20	Bottom-Up Controls
8	17.5	Bottom-Up Controls
8	15	Bottom-Up Controls
8	12.5	Bottom-Up Controls
12	20	Top-Down Controls
12	17.5	Top-Down Controls
12	15	Bottom-Up Controls
12	12.5	Bottom-Up Controls
16	20	Top-Down Controls
16	17.5	Top-Down Controls
16	15	Bottom-Up Controls
16	12.5	Bottom-Up Controls
20	20	Top-Down Controls
20	17.5	Top-Down Controls
20	15	Bottom-Up Controls
20	12.5	Bottom-Up Controls

INCOMPLETE MODELS EXPOSE US TO RISK

 This isn't to say that FAARFIELD is incorrect; it is fair in its simplification of bottom-up cracking to a single flat panel

• Future models of all exterior concrete pavements should consider curl/warp and load configuration w.r.t. joints

- However, if bottom-up always controlled, critical load/fatigue would cause cracking of successive panels simultaneously and with no preferential location
 - Field evidence suggests other
 - Structural cracking tends to be corner cracking or in the middle 1/3 of the panel in practice

Google Maps @ YYZ

Thank you for your time.

Robert Rodden | robert@pna-inc.com

