Pavement Design Tools & Their Relevance to Canadian Airports

> Susan Tighe, Ph.D, P.Eng Canada Research Chair in Pavement & Infrastructure Management Associate Professor Civil Engineering University of Waterloo

2007 SWIFT Conference, CAPTG Workshop Calgary, AB September 16, 2007

Acknowledgements

Leanne Whiteley, University of Waterloo

Greater Toronto Airports Authority

Natural Science & Engineering Research Council of Canada

Presentation Outline

Introduction

Background: Airport Pavement Design

Airport Design Tools

Relevance to Canadian Airports

Conclusions

Questions

Introduction: Design

Pavement Thickness Freezing Index (FI) Mean Annual Average **Temperature (MAAT)** Subgrade Type Design Aircraft Wheel Load Maximum Gross Weight Maximum Take-Off Weight Tire Contact Area **Construction Constraints**

Design Aircraft?

Introduction

Introduction

Flexible Design Methods

Transport Canada (TC) Federal Aviation Administration (FAA) CBR Method FAA Layered Elastic Design (LEDFAA) Asphalt Institute SW-1 Australian Airport Pavement **Structural Design System (APSDS)**

ASG-19, TC/PW

INPUTS

 Freezing Index
 Subgrade bearing strength/surface bearing modulus
 Aircraft (weight, tire pressure, % on main gear)

OUTPUTS

FLEXIBLE: Pavement equivalent granular thickness, t

SW-1, Asphalt Institute

INPUTS

- Mean annual air temperature
- Aircraft type
- Movements in design period
- Subgrade strength measure

OUTPUTS

Required thickness of new HMA pavement

APSDS, MINCAD (Australia)

INPUTS

 Traffic
 Wander statistics
 Layered system (material, thickness and strength)

OUTPUTS

Material type (asphalt vs. subgrade)
Maximum damage values (damage factor & critical strain) for each aircraft

Maximum of total damage

Airport Pavement Structural Design System

LEDFAA, FAA

INPUTS

Pavement structure properties Layer material Layer thickness Layer strength Aircraft properties - gross taxi weight annual departures % annual growth

OUTPUTS

Surface, base, subbase, subgrade

- Thickness
- Modulus

Aircraft

Help

Back

Life

Modify Structure

Total thickness to the top of the subgrade, t = 62.33 in

Design Structure

Save Structure

Equivalent Granular Thickness

Granular Base Equivalency (GBE) is a measure expressing the contribution of each pavement component of an equivalent thickness of granular base

Component	Thickness (mm)	GBE
Asphalt concrete	100	$100 \times 2 = 200$
Crushed base	250	250 x 1 = 250
Granular base	500	500 x 1 = 500
Total thickness	850	EGT = 950

TAC, 1997

Design Method Inputs

Design Method	Climate	Traffic	Subgrade Strength
ТС	X*	X1,2	X
FAA	X*	X2	X
LEDFAA		X	X
SW-1	X**	X2	X
APSDS		X	X

* Freezing Index ** Mean Average Air Temperature ¹ No volume consideration ² Design aircraft concept

Design Inputs

Design Inputs		Airport	
		Toronto (YYZ)	Waterloo (YKF)
Climate	FI ([°] C-days)	598	711
	MAAT (°C)	10	7.2
Traffic	Aircraft	A330-300, A340-300, A340-500/600, B747-400, B777-200ER, B777-200LR, B777-300ER, L-1011-500 MD-11	A320-200, BAe-146-100, Challenger, Dash 8, Cessna 152, 172, 210, 650, Convair 440, Falcon, DC-4, Gulfstream, Learjet, Piper Seminole, Saab 340
Material Layers	Surface	125 mm AC	100 mm AC
	Base	300 mm Granular A	300 mm Granular A
	Subbase	900 mm Granular B	340 mm Granular B
	Subgrade	CBR=4.5, S=77.75	CBR=4.5, S=77.75

Flexible

Flexible

Airport & Method

Toronto (YYZ) - Flexible

YYZ - Flexible 50% -Thickness Relative to 30% -**TC/PW** 10% --10% -**TC/PW SW-1 APSDS** LEDFAA -30%

Equivalent Granular

-50% -

Method

CBR=3 CBR=4 CBR=4.5 CBR=5 CBR=6

Waterloo (YKF) - Flexible

YKF - Flexible

Sources of Data

Airport Type

Within Program Sensitivity Analysis

Traffic

Subgrade Strength

 California Bearing Strength (CBR)

Climate

- Freezing Index (FI)
- Mean Annual Average Temperature (MAAT)

- Aircraft Characteristics Maximum Gross Weight (MGW) Maximum Take-Off Weight (MTOW) Wheel Load Tire Contact Area Aircraft Volume (% annual growth)

Sample sensitivity analysis EGT vs. MGW for TC flexible

Transport Canada Flexible

Asphalt Cement = 2 GBE Granular Base = 1 GBE

GBE=Granular Base Equivalency

Between Program Data Analysis

Variation significance

Airport specific thickness vs. design method analysis

Airport specific design method relative comparison

Sample – Variation Significance

denotes significant variability at a 95% confidence level
 denotes no significant variability at a 95% confidence level

Sample – Airport vs. Design Method

LEDFAA Flexible - Toronto ON

Between Program Flexible Results

Subgrade strength & annual growth
 statistically significant

Change in subgrade strength more significant than an in traffic of up to 10% TC with frost protection & FAA with stabilized base
 most conservative flexible pavement structure

LEDFAA & FAA with stabilized base most closely relate to TC flexible design output

23

Conclusions

Layer thicknesses increase as CBR values decrease SW-1 & APSDS are generally more conservative for large airports than TC/PW SW-1 & APSDS are less conservative for small airports than TC/PW

Conclusions

The FAA flexible pavement thickness increases dramatically once the subgrade is reduced to a CBR of 6 (weak subgrade strength)

FAA flexible = f (design aircraft maximum gross weight)

LEDFAA, FEDFAA, SW-1, APSDS more sensitive to subgrade (vs. traffic)

Recommendations

Geometric design analysis

impact on pavement design and performance

Comparison new design methods (FAARFIELD)

New state-of-the art designs do not necessarily account for the climatic conditions experienced in Canada

Incorporate economic analysis into the design and planning stage

Thank you/ Merci Questions?

Susan Tighe, sltighe@uwaterloo.ca