

COLD IN – PLACE ASPHALT RECYCLING, FULL DEPTH RECYCLING AND HOT IN – PLACE RECYCLING CIR – FDR – HIR JOHN EMERY **CONSULTING ENGINEER RETAINED PRINCIPAL ENGINEER – TECHNOLOGY** LVM – JEGEL / DESSAU ADJUNCT PROFESSOR OF CIVIL ENGINEERING McMASTER UNIVERSITY john.emery@lvmjegel.com

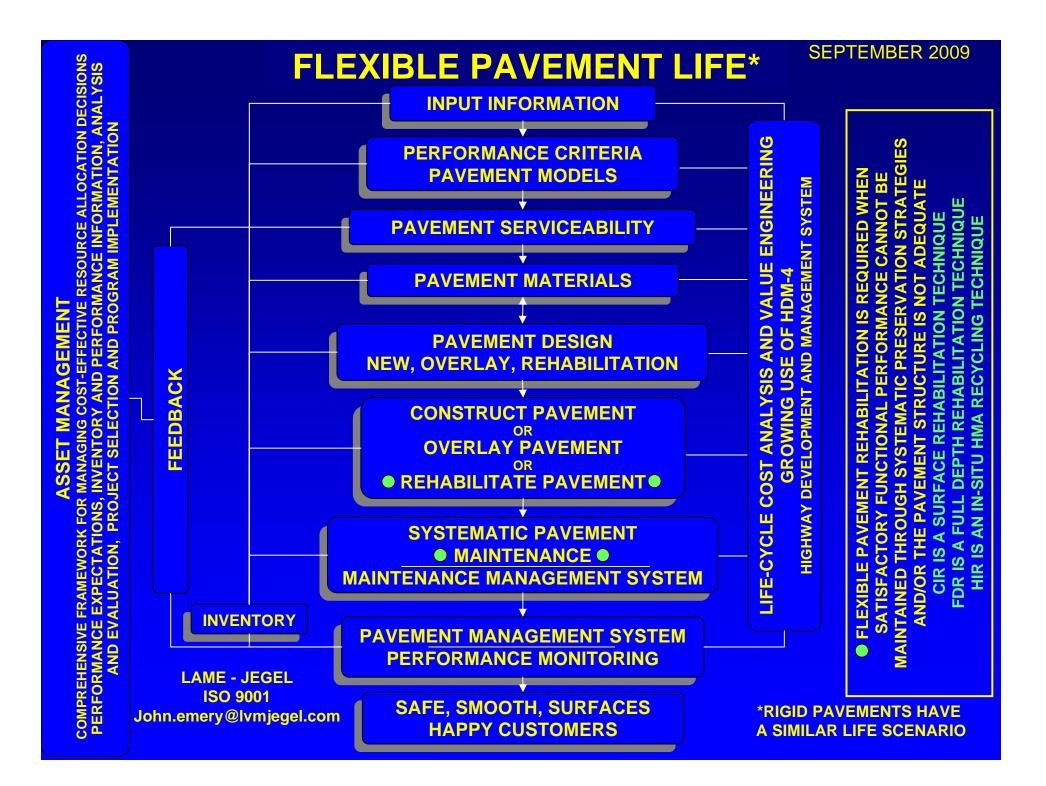
THE TECHNICAL ASSISTANCE OF ALAIN DUCLOS AND JESSICA HERNANDEZ OF LVM - JEGEL WITH THIS PRESENTATION IS GRATEFULLY ACKNOWLEDGED

CITY OF TORONTO ELLESMERE ROAD PRECISION MILLING TO REMOVE RUTTING

HOT-MIX ASPHALT PLANT RECYCLING COMBINED DRUM-BATCH PLANT

SEPTEMBER 2009

HOT IN-PLACE RECYCLING (HIR)


REMIX (FULL RECYCLING) – HEATING TO A DEPTH OF UP TO 75 mm, HOT MILLING, REJUVENATION/ NEW AGGREGATE/ NEW MIX (OPTIONAL – DESIGNED), MIXING, REPROFILING/PLACING WITH PAVER, AND COMPACTION MARTEC AR2000, INTERSTATE 85, NORTH CAROLINA, OFC, 2001

COLD IN-PLACE RECYCLING

FOAMED (EXPANDED) ASPHALT FULL DEPTH RECLAMATION

SEPTEMBER 2009

CIR, FDR AND HIR

CIR PROCESS

TYPICAL 1993 ONTARIO HIGHWAY CIR WITH EMULSION PROJECT

PAVEMENT MILLED/SIZED AND ABOUT 1.5 PERCENT HF EMULSION ADDED PROCESSED RECYCLED MATERIAL PLACED WITH PAVER COMPACTION COMPLETED WITH LARGE RUBBER TIRED ROLLER

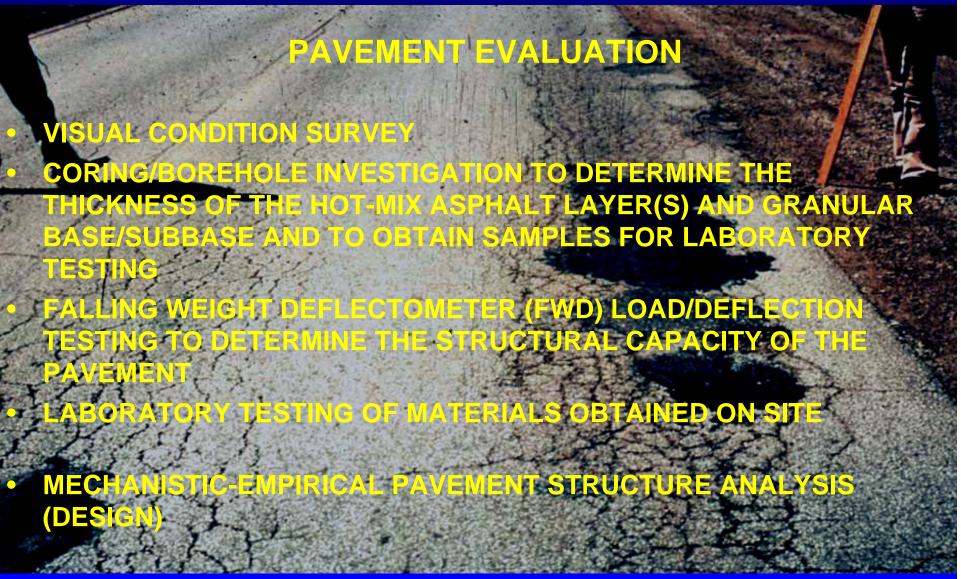
- OLD ASPHALT PAVEMENT MILLED AND SIZED
 - MILLED TO AT LEAST 90 PERCENT OF DEPTH TO ENSURE REFLECTIVE CRACKING MITIGATION
 - 75 TO 125 mm DEPTH TYPICALLY
 - MINUS 37 mm TYPICALLY
- ABOUT 1.5 PERCENT EMULSION ADDED
- COMPACTION WITH HIGH COMPACTIVE EFFORT ROLLERS
- CURING AND TRAFFIC COMPACTION (~ 2 WEEKS)
- PLACEMENT OF WEARING SURFACE

CIR, FDR AND HIR

SEPTEMBER 2009

CIR FEATURES

WIDE RANGE OF CIR EQUIPMENT AND PROCESSES AVAILABLE



1996 CIR WITH EMULSION AND FIRST1999 CIR WIONTARIO SUPERPAVE HMA OVERLAYCAN ADD C

1999 CIR WITH EMUSION EQUIPMENT CAN ADD CEMENT OR LIME SLURRY 2004 PAVER LAID CIR WITH FOAMED ASPHALT

- PAVEMENT EVALUATION AND STRUCTURAL DESIGN METHODS DEVELOPED
- CIR IS A 4 COMPONENT SYSTEM COMPARED TO HMA 3 COMPONENT SYSTEM
- COLD MARSHALL MIX DESIGN METHOD SGC METHOD BEING DEVELOPED
- USED FOR A WIDE RANGE OF ESALs
- MODIFICATIONS FOR IMPROVED ECONOMICS AND/OR SPECIAL CONDITIONS
- CONSTRUCTION AND MATERIALS SPECIFICATION DEVELOPED
- STRUCTURAL COEFFICIENTS (GBE OR a₁) DEVELOPED
- LIFE-CYCLE COST EFFECTIVENESS SHOWN
- MITIGATION OF REFLECTIVE CRACKING DEMONSTRATED

SEPTEMBER 2009

IS THIS A SUITABLE SECTION FOR CIR? •DRAINAGE? •STRUCTURAL ADEQUACY?

CIR (EMULSION), FDR AND HIR

SEPTEMBER 2009

CIR PROCESS MODIFICATIONS

ADDITION OF NEW COARSE AGGREGATE - CLOSER VOIDS AND STABILITY CONTROL

SE OF DIFFERENT EMULSIONS (HFR FO ISTANCE) - MORE OLD ASPHALT CEMENT EFFEC

PROCESS MODIFICATIONS - ADDITION OF CEMENT OR LIME FOR INSTANCE

FLUSHING AND RUTTING, WATERLOO COUNTY ROAD 1, 1993

CIR (EMULSION), FDR AND HIR

SEPTEMBER 2009

WATERLOO COUNTY ROAD 1 CONDITION IN JANUARY 2002

SEPTEMBER 2009

CIR MIX DESIGN

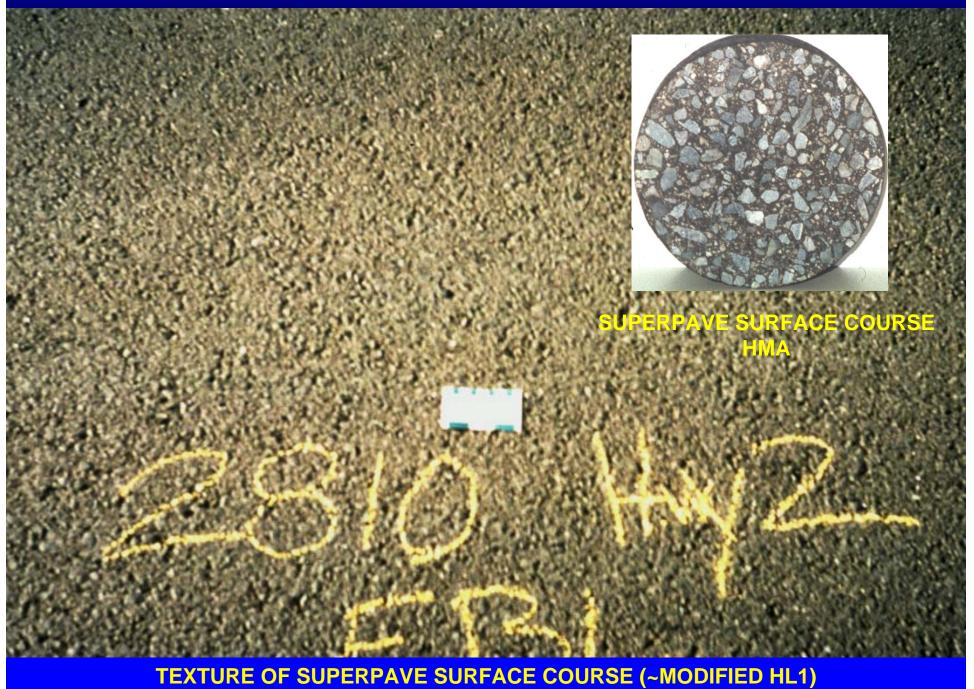
CIR (EMULSION), FDR AND HIR

SEPTEMBER 2009

CIR PLUS HMA OVERLAY

'SUPERPAVE PLUS'

CIR REFLECTIVE CRACKING MITIGATION
 SUPERPAVE TECHNOLOGY OVERLAY


 THERMAL CRACKING RESISTANCE
 RUTTING RESISTANCE
 FATIGUE CRACKING RESISTANCE

MILLER

SUPERPAVE PLUS CIR PROJECT, FRONTENAC COUNTY, 1996 RECONSTRUCTION OF 30 kms OF HIGHWAY 2 NEAR KINGSTON, ONTARIO

CIR, FDR AND HIR

SEPTEMBER 2009

SEPTEMBER 2009

CIR MITIGATION OF REFLECTIVE CRACKING PERFORMANCE OF 1996 CIR WITH EMULSION AND SUPERPAVE OVERLAY

CONDITION OF ADJACENT 1997 MILL/HMA OVERLAY WITHOUT CIR – SIGNIFICANT CRACKING

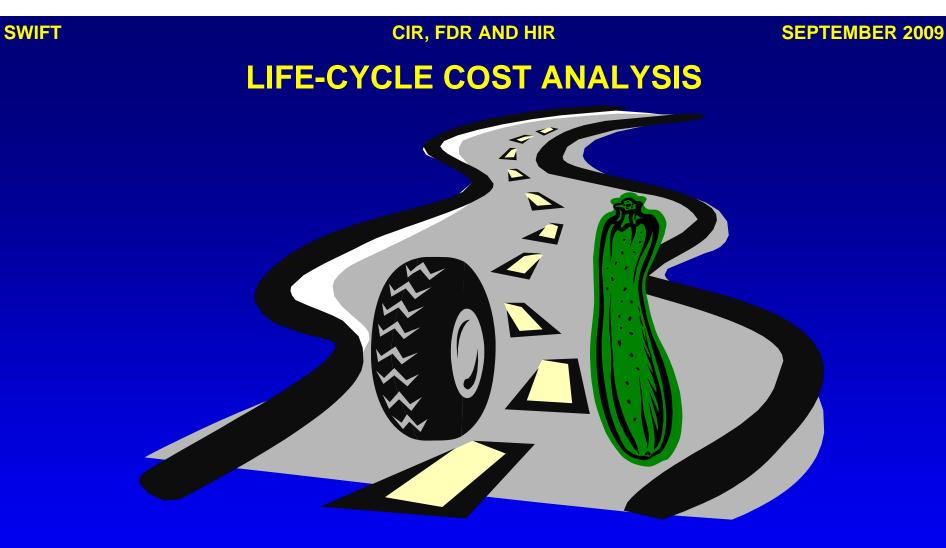
CONDITION OF SUPERPAVE HMA IN 2004 NO CRACKING

CIR PERFORMANCE REQUIREMENTS AND ACCEPTANCE

- **PERFORMANCE REQUIREMENTS**
 - REFLECTIVE CRACKING MITIGATED
 - PAVEMENT STRUCTURE STRENGTHENED
 - PAVEMENT SHAPE IMPROVED (CAN BE WIDENED)
- ACCEPTANCE
 - TYPICAL CONTRACTOR PRODUCING UNDER TYPICAL CONDITIONS
- PERFORMANCE PARAMETERS (ACCEPTANCE)
 - STRENGTH
 - **DURABILITY**
 - **SMOOTHNESS**

CIR (EMULSION), FDR AND HIR PERFORMANCE

SEPTEMBER 2009


BRUCE COUNTY ROAD 31 CIR PROJECT COMPLETED IN 1991 15 PERCENT COARSE AGGREGATE, 1.1 PERCENT HF150 CONDITION IN 1997

CIR (EMULSION), FDR AND HIR PERFORMANCE

SEPTEMBER 2009

BRUCE COUNTY ROAD 31 CONDITION IN 2002

"WE GO OUT AND BUY PAVEMENTS LIKE WE WOULD ZUCCHINI. ALL WE CARE ABOUT IS PRICE."

> DAMIAN J. KULASH, EXECUTIVE DIRECTOR, STRATEGIC HIGHWAY RESEARCH PROGRAM, 1993

SEPTEMBER 2009

CIR FEATURES RAND MODIFIED CIR WELL ESTABLISHED AND PROVEN EHABILITATION TECHNIQUE COMMEND AGENCY COMPLETE PRELIMINARY PAVEMEN ALEON AND SET PERFORMANCE SPECIFICATI ND CONTRACTOR MADE RESPONSIBLE FO DESIGN, PROCESS AND PERFORMAN **D** RECYCLING PROCESS, EMULSION AND MODIFICATION(S) BE SEPARATE PAY ITEMS USE FOR HIGH TRAFFIC LEVELS WELL ESTABLISHED a1 OF ~ 0.30 TO 0.40 FOR AASHTO SN (GBE OF ~ 1.8) FOR QUALITY, FULLY CURED, CIR (EMULSION) TIGATION OF REFLECTIVE CRACKING **SIGNIFICANT COST SAVINGS** • **APPLICATION TO AIRPORT ASPHALT PAVEMENTS (CURING TIME** LOGISTICS) **FDR NEXT**

CIR, FDR AND HIR

SEPTEMBER 2009

FULL DEPTH RECLAMATION – FDR

PULVERIZING LIME CEMENT EMULSION FOAMED ASPHALT COMBINATION

CIR, FDR AND HIR

SEPTEMBER 2009

FULL DEPTH RECLAMATION – FDR

PULVERIZING LIME CEMENT EMULSION FOAMED ASPHALT COMBINATION

LIME STABILIZATION OF OLD ASPHALT PAVEMENT/GRANULAR BASE DOMINICAN REPUBLIC

CIR, FDR AND HIR

SEPTEMBER 2009

FULL DEPTH RECLAMATION – FDR

PULVERIZING LIME CEMENT EMULSION FOAMED ASPHALT COMBINATION

CEMENT STABILIZATION OF COLD ASPHALT PAVEMENT/GRANULAR BASE NATCHEZ TRACE PARKWAY, MISSISSIPPI

CIR, FDR AND HIR FULL DEPTH RECLAMATION – FDR

SEPTEMBER 2009

PULVERIZING LIME CEMENT EMULSION FOAMED ASPHALT COMBINATION

FDR EMULSION STABILIZATION SS-1 WITH GRANULAR MATERIAL ADDED NICARAGUA

SEPTEMBER 2009

CIR, FDR AND HIR FULL DEPTH RECLAMATION – FDR

PULVERIZING LIME CEMENT EMULSION FOAMED ASPHALT COMBINATION

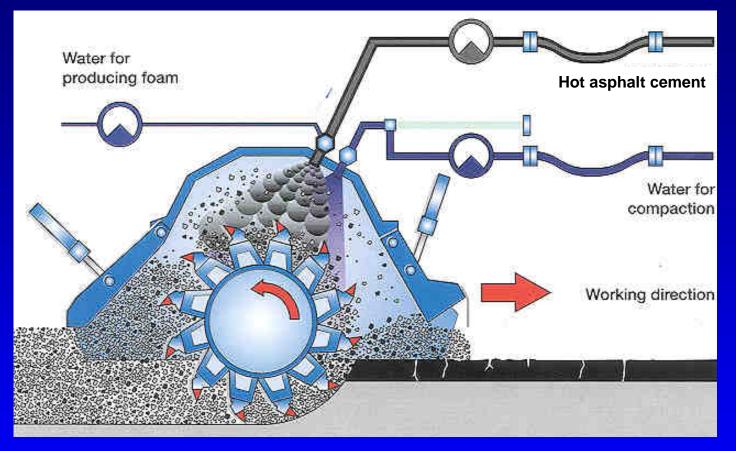
FDR WITH FOAMED ASPHALT ONTARIO

CIR, FDR AND HIR

SEPTEMBER 2009

FULL DEPTH RECLAMATION – FDR

PULVERIZING LIME CEMENT EMULSION FOAMED ASPHALT COMBINATION



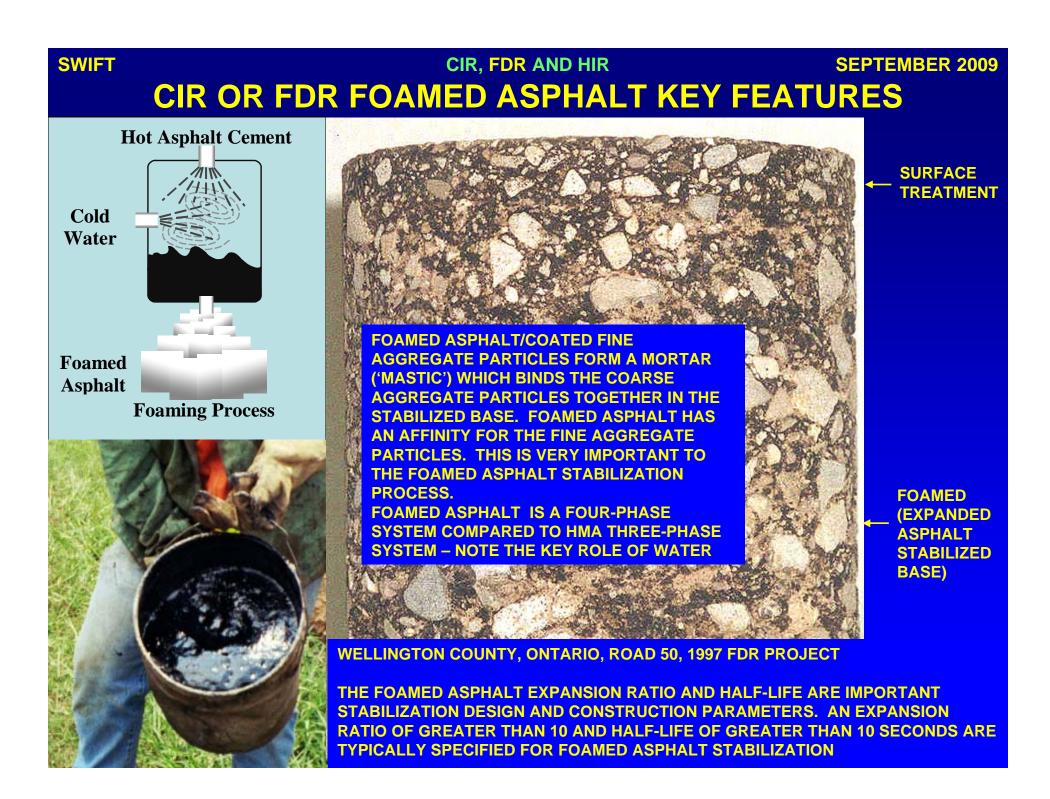
FDR WITH FOAMED ASPHALT/LIME GEORGIA

CIR, FDR AND HIR

SEPTEMBER 2009

FDR FOAMED ASPHALT BASE STABILIZATION PROCESS

- OLD ASPHALT PAVEMENT PREPULVERIZED
 ADDITIONAL GRANULAR OR RAP MATERIAL MAY BE ADDED
- TYPICAL STABILIZATION DEPTH OF 125 TO 200 mm
- ABOUT 2.0 TO 3.5 PERCENT FOAMED ASPHALT ADDED
- SHAPING AND HEAVY COMPACTION
- PLACEMENT OF SURFACE TREATMENT OR HMA SURFACE


SEPTEMBER 2009

CIR AND FDR FOUR COMPONENT SYSTEM

UNIQUE PROPERTIES OF FOAM

"Known as the foamed asphalt process, it utilizes the unique properties of foams. When an asphalt cement is foamed, it increases tremendously in volume, its viscosity is materially reduced, and it becomes much softer at lower temperatures. Foaming also introduces energy into the asphalt, thereby modifying its surface tension and making it more sticky. It increases its ability to displace moisture from a surface and to coat a surface with a comparatively thin film. When the foam breaks and the energy is dissipated, the asphalt cement recovers its original properties with no change in its chemical composition. Through modified surface tension, cold, wet aggregates or soils can be used, and wet clayey lumps of soil can be permeated with asphalt. Because of the ability of foamed asphalt to coat mineral particles with thin films, the use of ungraded local aggregates in mixes becomes possible and the production of mastics of mineral dusts and asphalt is also feasible. Thus, through the use of asphalt cements as a foam, materials heretofore considered unsuitable can now be used in the preparation of mixes for stabilized bases and surfacing for low-cost road construction."

FOAMED ASPHALT FOR ECONOMICAL ROAD CONSTRUCTION, CSANYI 1962, ASCE

CIR, FDR AND HIR SEPTEMBER 2009 FDR FOAMED ASPHALT STABILIZED BASE DESIGN AND ESTIMATING GUIDE

60 - 100%

30 - 60%

ESTIMATED FGAMED ASP HALT CONTENT - 'MOISTUR' SUSCEPTIBLE' AC% = (%AGG/100 x 4.5) + (%RAP/100 x 1.5) - NOT 'MOISTURE SUBCEPTIBLE' AC% = (%AGG/100 x 4.0) + (%RAP/100 x 1.5)

PREFERRED OVERALL GRADATION

MINUS 19 mm

GUIDELINES FOR USE OF HYDRATED LIME (SOTER GUIDE)
 PLASTICITY INDEX (PI) < 4
 PI 4 TO 8
 PI 5 8
 2% HYDRATED LIME

1 14

CIR, FDR AND HIR

SEPTEMBER 2009

FOAMED ASPHALT STABILIZATION MIX DESIGN

Wirtgen

- PROCESS RAP SAMPLE(S) AND AGGREGATES
- DETERMINE OPTIMUM COMPACE
- CHECK FOAMED ASPHALT EXPANSION RANGE
- PREPARE BRIQUET
 - 2.0%, 2.5%, 3.0% 30% 4.0% FOAMED ASPHALT DEPENDING ON RICH WATER)
 - RAP + AGGREGATE + WATER + FACTOTAL FLUIDS 8.5%)
 - 75 BLOWS/FACE AT RESULTING TEMPERATURE (~25°C)
 - CURE 24 HOURS IN MOL
 - REMOVE FROM MOLD
 - CURE 72 HOURS AT 60°C

TEST BRIQUETTES AT 25°C (MARSHALL PROPERTIES)

CHECK MOISTURE SUSCEPTABLITY, TSR (SATURATED, SOAKED 4 DAYS AT 25°C)

PTI PUGMILL MIXER

1.

WIRTGEN FOAMER

LVM - JEGEL ASPHALT LABORATORY

SEPTEMBER 2009

TYPICAL FOAMED ASPHALT PROJECT WELLINGTON COUNTY, ONTARIO, 1997

PREPULVERIZED EXISTING PAVEMENT TO A DEPTH OF 100 mm PLACED ADDITIONAL GRANULAR MATERIAL (GRANULAR A) 150 mm FOAMED ASPHALT STABILIZATION DOUBLE SURFACE TREATMENT

FOAMED ASPHALT MIX DESIGN

- FOAMED ASPHALT
- TOTAL ASPHALT CEMENT CONTENT
- EXISTING ASPHALT CONCRETE (RAP)
- GRANULAR MATERIAL ADDED
- AIR VOIDS
 - STABILITY
 - TSR

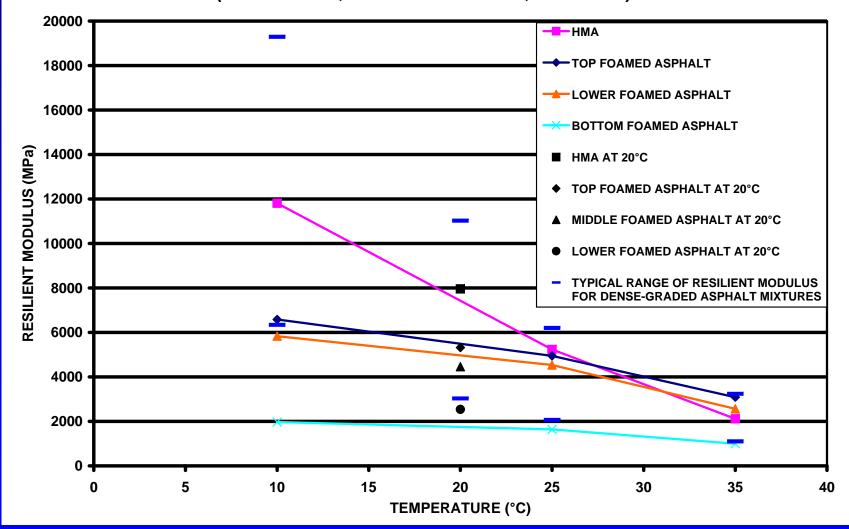
CIR, FDR AND HIR

SEPTEMBER 2009

CONDITION SHORTLY AFTER COMPLETION IN 1997

CIR, FDR AND HIR

SEPTEMBER 2009


WR 50 CONDITION IN JANUARY 2007 WR 50 CONDITION IN JANUARY 2007 NOTE DISTRESS IN POOR DRAINAGE AREA

CIR, FDR AND HIR

SEPTEMBER 2009

CHARACTERIZATION OF HMA AND FOAMED ASPHALT

RESILIENT MODULUS VS. TEMPERATURE RELATIONSHIP HOT MIX ASPHALT AND EXPANDED ASPHALT MIX (HOUZE WAY, CITY OF ROSWELL, GEORGIA)

CIR, FDR AND HIR

SEPTEMBER 2009

FDR FOAMED ASPHALT FEATURES

PPI ICATIO ELEXIBLE LAYER WITH GOOD RUITING AND FATIGUE PROPERTIES ECONOMIC (LCCA) RAPID STRENGTH GAIN - ROAD CAN BE OPENED AFTER COMPACTION -REFLECTIVE CRACKING MITIGATION DISADVANTAGES – REQUIRES A SUPPLY OF HOT (~160°C PLUS) ASPHALT CEMENT STABILIZED MATERIAL SHOULD HAVE 5 TO 15 PERCENT PASSING 75 μm FOAMED (EXPANDED) ASPHALTISTABILIZATION WELL ESTABLISHED, PROVEN AND COST EFFECTIVE REFLECTIVE CRACKING MITIGAT PROFILE CORRECTION AND SUPER ELEVATION RESTORATION RECOMMEND AGENCY EVALUATE PAVEMENT/SET PERFORMANCI HIRNE SPECIFICATIONS AND ACCEPT ESPONSIBLE FOR RECOMMEND CONTRACTOR R DESIGN/PROCESS/MATERIALS PERFORMANCE AND (QC) DESS BE SEPARATE PAY HEN RECOMMEND STABILIZATION PROV **CON (CBE OF ~ 1.8)** , OF ~ 0,35 TO 0,40 FOR AAS VERY RUT RESISTANT

SEPTEMBER 2009

CIR, FDR AND HIR EVOLUTION OF HIR FIRST GENERATION

REFORM (HEATER – SCARIFICATION) – HEATING TO A DEPTH OF 20 TO 25 mm, REJUVENATION (OPTIONAL), MIXING, LEVELLING, REPROFILING, AND COMPACTION

CIR, FDR AND HIR EVOLUTION OF HIR SECOND GENERATION

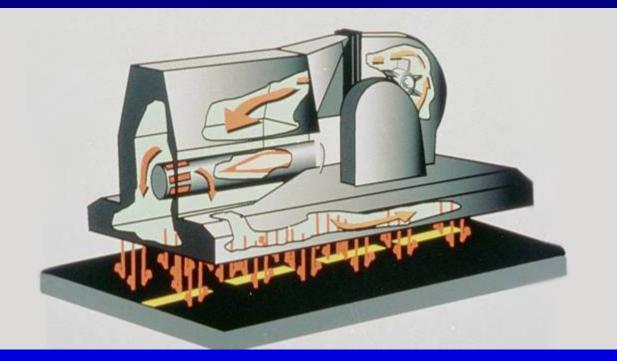
SEPTEMBER 2009

REPAVE (PARTIAL RECYCLING) – HEATING TO A DEPTH OF 25 TO 50 mm, HOT MILLING, REJUVENATION (OPTIONAL), MIXING, LEVELLING, REPROFILING, AND ADDING A NEW THIN OVERLAY OF HOT-MIX ASPHALT BRITISH COLUMBIA HIGHWAY 1, NEAR VANCOUVER 1988

SWIFT

CIR, FDR AND HIR EVOLUTION OF HIR THIRD GENERATION

SEPTEMBER 2009


REMIX (FULL RECYCLING) – HEATING TO A DEPTH OF UP TO 75 mm, HOT MILLING, REJUVENATION/ NEW AGGREGATE/ NEW MIX (OPTIONAL – DESIGNED), MIXING, REPROFILING/PLACING WITH PAVER, AND COMPACTION MARTEC AR2000, INTERSTATE 85, NORTH CAROLINA, OFC, 2001

SWIFT

CIR, FDR AND HIR

SEPTEMBER 2009

HEATER TECHNOLOGY

THE AIR IN THE DIESEL-FUELED COMBUSTION CHAMBER IS HEATED TO UP TO 700°C AND BLOWN ON THE PAVEMENT THROUGH HOLES IN THE MANIFOLD, WITH THE SPENT HOT AIR RECUPERATED AND REHEATED

THE SOFTENED OLD ASPHALT CONCRETE IS NOT DAMAGED ('BURNED') AND EMISSION LEVELS ARE VERY LOW

MARTEC AR2000 HIR PROCESS – A TRAVELLING ASPHALT RECYCLING PLANT

CIR, FDR AND HIR

SEPTEMBER 2009

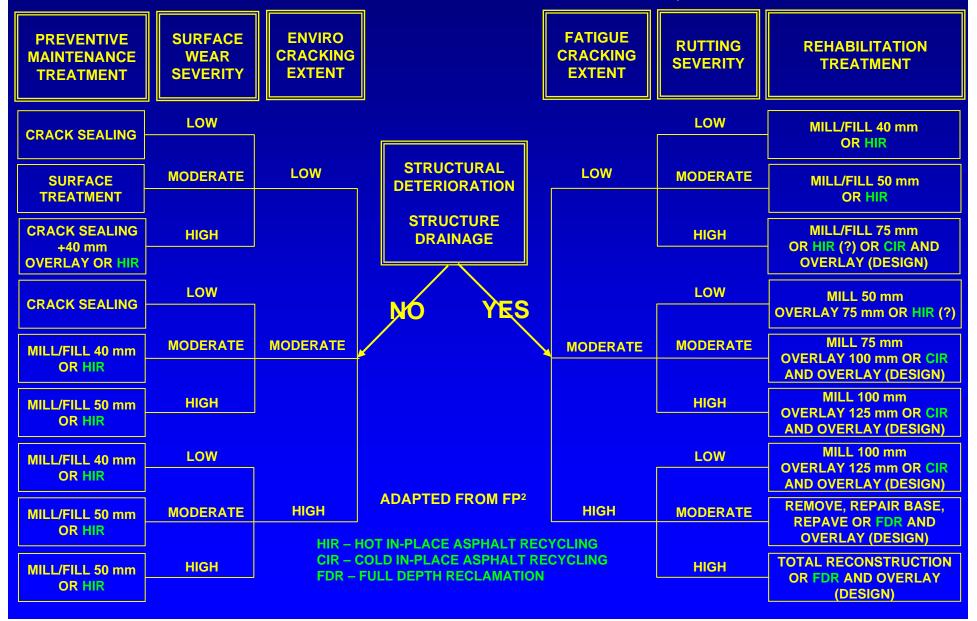
ONTARIO HIGHWAY 401 DEMONSTRATION PROJECT

COMPLETED MARTEC AR2000 HIR SECTION IN SEPTEMBER 1999 WITH TYPICAL HIGHWAY 401 TRUCK TRAFFIC ON THIS US-CANADA NAFTA ROUTE

CIR, FDR AND HIR

SEPTEMBER 2009

ONTARIO HIGHWAY 401 DEMONSTRATION PROJECT

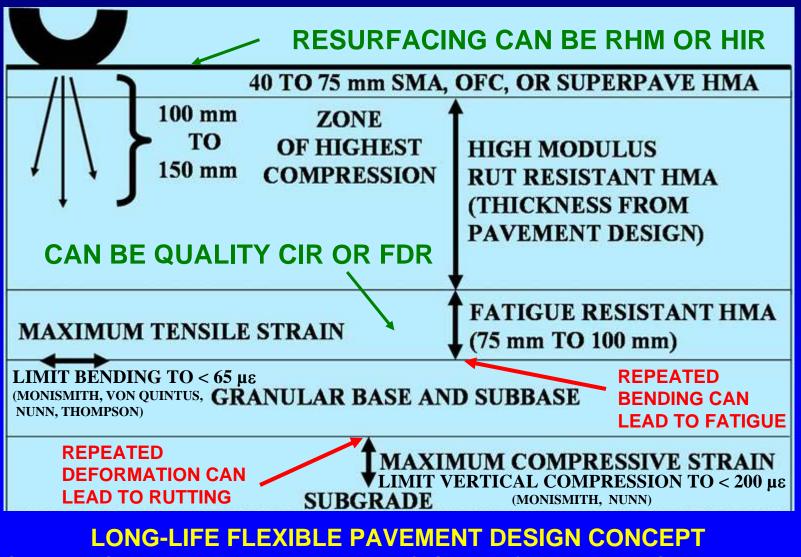

CURRENT CONDITION OF THE MARTEC AR2000 HIR SECTION IN FEBRUARY 2005 SHOWING THE EXCELLENT CONDITION OF THE TWO LANES INVOLVED

RUTTING AND FRICTION MONITORING TEST RESULTS HIGHWAY 401 DEMONSTRATION PROJECT

DEMONSTRATION SECTION	IRI	RUTTING (MM)	FRICTION (ASTM)	
	THREE YEARS 2002	BEFORE 1999	ONE YEAR 2000	THREE YEARS 2002
SECOND GENERATION HIR	1.29	4.2	41	44
NEW DENSE FRICTION COURSE (DFC)	1.12	2.9	41	44
MARTEC AR2000 HIR	0.98	2.3	41	47
RECYCLED HOT-MIX DFC	0.98	2.6	42	46
MICROSURFACING - 2000	0.90	4.2	49	44
MICROSURFACING - 1999	0.78	4.6	45	41

ONTARIO MINISTRY OF TRANSPORTATION 2002 FINDINGS FOR THIS HIGHLY TRAFFICKED ROUTE MARTEC AR2000 HIR SECTION IS IN EXCELLENT CONDITION AND PERFORMING THE BEST OF ALL THE SECTIONS CONFIRMED BY JEGEL FEBRUARY 2005 INSPECTIONS

SWIFT CIR, FDR AND HIR SEPTEMBER 2009 DECISION TREE FOR FLEXIBLE PAVEMENT MAINTENANCE AND REHABILITATION INCLUDING HIR, CIR AND FDR



CIR, FDR AND HIR

SEPTEMBER 2009

DESIGN OF LONG-LIFE FLEXIBLE PAVEMENTS

SCHEMATIC OF A LONG-LIFE FLEXIBLE (ASPHALT) PAVEMENT SHOWING THE RENEWABLE SMA, OFC, OR SUPERPAVE HMA/RHM SURFACE COURSE

SEPTEMBER 2009

PLEASE CONTACT JOHN EMERY AT LVM - JEGEL WITH YOUR QUESTIONS 416-213-1060 john.emery@lvmjegel.com