

Presented September 15, 2010 SWIFT Conference M. Main

CBR Index Measurements For Gravel Runway Assessment

Problem: Questionable Gravel Runway Surface Integrity

- Sufficient Strength?
 - Is the surface safe for aircraft operations?
- Durability?
 - Will the surface hold together?
- Sufficient Support?
 - Will the surface fail from below?
- Life Cycle
 - How long will the surface perform?
 - What's the cost of sustaining performance?
 - How can maintenance be anticipated and planned?

Objective: Simple Monitoring of Integrity

- Simple, rapid, noninvasive & accurate surface CBR index measurement
 - Quality control
 - Condition assessment
 - Health monitoring
 - Data
 - Estimate life
 - Anticipate maintenance

Approach: Surface Stiffness Indexed to CBR

- ASTM D6758 stiffness measurements
 - Humboldt GeoGauge
 - Non-invasive
 - Simple & quick
 - Established precision & bias
- GeoGauge stiffness CBR relationship
 - LTRC (LADOTD & LSU)
 - 0.84 correlation (R²)

What Is Stiffness?

A Primary Measure of Ground Behavior

- A measure of the resistance offered by a elastic body to deformation
- Where
 - P is the force applied

 $k = \frac{P}{\delta}$

 $-\delta$ is the displacement produced by the force

Humboldt GeoGauge: What It Is?

- Measures Stiffness in 75 sec. per ASTM D6758
- Non-Destructive
- Depth of measurement: ~ 9"
- Size: 11" OD x 10" tall
- Weight: 22 lb.
- No Licensing or Safety Requirements
- Causes No Construction Delays

How it Works

Vibrates Ground & Measures the Deflection

Steady-State, Low Strain, Low Frequency Loading

> Most Like Resilient Modulus Of Any In-Place Measurement

How To Make A Measurement

Precision & Bias

- Precision (repeatability)
 - Typical Coefficients Of Variation
 - Lime Rock Base: 3.7% to 5.6% (Sand Assisted)
 - Stabilized A-2-4 Subgrade: 3.1% to 8.8% (No Sand)
 - Asphalt Pavement: 2.6% to 4.2% (Sand Assisted)
 - Current Basis
 - 1000s Measurements Made by State DOTs
 - 1000s Measurements Made by Humboldt & Midwest
 - Multiple Gauges & Multiple Operators
- Bias (traceability to a reference, factory calibration)
 - Reference: Moving Mass
 - Known Mass: 10 Kg (22 Lb)
 - 25 Known Frequencies: 100 to 196 Hz
 - Stiffness = $-jW^2M$
 - Coefficient of Variation: < 1%
 - Basis: 1,000s of Humboldt. Midwest & FHWA Measurements

Verification

Field Check of Proper Operation

- Verifier Mass Assembly on flat, rigid surface
- Wipe clean ring foot
- Lubricating oil on the shoulder of the Verifier Mass.
- Set the on Verifier Mass.
- Rotate GeoGauge.
- Press the MEAS button
- Record the stiffness.
- Remove the GeoGauge & reset
- Average of 3 to 5 measurements
- An average stiffness ~-8.6 to -9.8 MN/m

Correlation to CBR (Unsoaked)

 $CBR = 0.0039(8.672 K_G)^2 - 5.75$

- CBR is in percent (%)
- K_G is the GeoGauge stiffness in MN/m
- Correlation coefficient (R²) is 0.84.

- Hundreds of comparison tests
 - Sands
 - Silts
 - Clays
- Developed by Louisiana Transportation Research Center

(Murad Y. Abu-Farsakh, Ph.D., P.E., Khalid Alshibli, Ph.D., P.E, Munir Nazzal, and Ekrem Seyman, Assessment Of In-Situ Test Technology For Construction Control Of Base Courses And Embankments, May, 2004, Louisiana Transportation Research Center, Baton Rouge, LA 70808, FHWA/LA.04/385)

Gravel Runway Surface Assessment

Gravel Runway Surface Assessment

Brown Runway 40' Wide South Edge

to full width of the runway

Blackish Runway 40' Wide Center

to center of the runway

Midwest Runway Survey, '08: Tanana, AK

Section 1 (Threshold) **Spatial Distribution of Stiffness** 18 16 14 Ē 12 10 20.21 - 18 20 - 16-18 - 14-16 12.14 Section. Dept Centre 47 10 12 -0-10 Section 1 North 40' a South 40 = 6-8. 14 B Bullion Rev Lines 7 ■2.4 South Distance, ft = 0-2 Mumber of EK-35A at 1 gal per 40 ft² applied in Summer '07 EK-35A at 1 gal per 80 ft² applied in Summer '08

Stiffness, a window into:

- Strength Increase & Uniformity (safety)
- Dust Prevention (bound fines)
- Preventive Maintenance

17

12

SCITCHER, MN/ID

Gravel Runway Surface Assessment & QC

AKDOT Runway Condition Assessment, '09

Dust & Strength Assessment of 50+ Runways
Basis for Evolving AKDOT QC & Performance Specs.

- Basis for Midwest Fines Preservation Program
- Application Rate Model

-Value Propositions

- Performance Specs.

More Surface Assessment & QC

AKDOT & Midwest Runway & Roadway Condition Assessment, '10

- AKDOT: 28+ runways & 5+ roads
- Nunavut: 1 runways & 1 road
- Ontario, NWT, Quebec: 3 runways

Threshold & center of runway ~ Each ½ mile of road Before & After Application

Ongoing Substantiation: <u>Comprehensive Basis for Quantitative Performance</u>

