

IMPROVING FINE GRAINED
SOILS USING FLUID AND FIBER
REINFORCEMENT

Research Team

- Kenan Hazirbaba, UAF
- Rodney Collins, Graduate Student
- Billy Connor, AUTC
- Duane Davis, Undergraduate Student

Funding

- US DOT
- FHWA
- Alaska Department of Transportation and Public Facilities
- Midwest Industries
- Peak Oil Services

The Problem

- Gravel in western Alaska scarce
- Can cost up to \$800/ cubic meter
- In-situ material ranges from fine sand to organic silts
- Terrain: River delta with numerous slough, oxbows and lakes.
- Climate: Coastal

Use of Marginal Material

- Increase the use of local material without sacrificing performance
- Use of Fibers and Soil Stabilizers most promising
- Completed first test section at Horseshoe Lake
- Working with DOT on possible implementation at Kwigillingok

Kwigillingok Runway

Kwigillingok Village Road

Research Approach

- Characterize untreated soils
- Determine optimum fiber content
- Compare fluid additives
- Field Testing

Components

Geofibers

Synthetic Fluid

Soil

Geofiber

GEOFIBERS[®]

- 1"-3" Long Discrete Fibers
- Light Weight
- High Tensile Strength
- Fibrillated & Tape fibers

Geofiber Applications

- Slope Repair / Slope Stabilization
- Dam / Levee Construction
- Veneer Reinforcement
- Sub Grade Stabilization
- Pavement Base Reinforcement
- Chemically Treated Base Reinforcement
- Landfill Liners, Caps, & Covers

Synthetic Fluid

- Earth ArmourLimited Arctic
- Soil Sement
- Others to follow

Soil Tested

- Cape Simpson: Uniformly graded silt
- Bethel: Fine Silty Sand
- Horseshoe Lake: Fine poorly graded medium Aeolian sand
- Fairbanks Silt: poorly graded Aeolian silt
- Ottawa Sand: coarse sand

CBR Test

- Compare the displacement to the load
- Area of piston is known
- Resultant stress is found
- CBR number is calculated

Example Mixture of Soil, Geofibers, and Water

Optimum Fiber Content (Bethel)

Optimum Synthetic Fluid Content?

Effect of Earth Armour Fluid (Bethel)

UU Triaxial Failure Modes

Compacted/unimproved sample

No distinct failure plane-bulging out

Compacted/geofiber-reinforced sample

UU Triaxial Results (Bethel)

Synthetic Fluid Content,%	Water Content,%	Geofiber Content,%	Friction Angle, degrees	Cohesion, psi
-	11	-	41.8	2.9
-	11	0.5	43.7	23.5
3	6	0.5	48.5	13.9
5	6	0.5	53.6	11.2
7	6	0.5	55.6	4.9

Typical Direct Shear Tests

Construction Steps

Typical DCP Curves

CBR @ 100mm w/ DCP

150 mm section 28

300 mm section 41

30 m before 22

30 m after 28

Study Preliminary Conclusions

- Optimum Fiber Content 0.3 to 0.5%
- Impact of fluid is variable
- Expect CBR to double with technology
- Treated soil are strain hardening
- Treated silts and sands behave more like sandy gravels
- Finer soils tend to benefit more
- Not applicable to gravels or sandy gravels

Future Research/Goals

- Write an Engineering Design Guide for the use of geofibers and synthetic fluid to stabilize marginal soils (e.g., soils typically found in western Alaska and North Slope)
- Investigate additional soil types encountered in Alaska
- Quantify the synthetic fluid's ability to stabilize soil while undergoing freeze-thaw cycles (i.e., reduce or prevent frostheave)

Future Research/Goals

- Investigate synthetic fluid mobility in the soil
- More in-depth investigation on the aging
- Observe the effects of geofiber shape and size on soil strength and long-term stability
- Resilient modulus testing for pavement design
- Large scale in-situ testing

