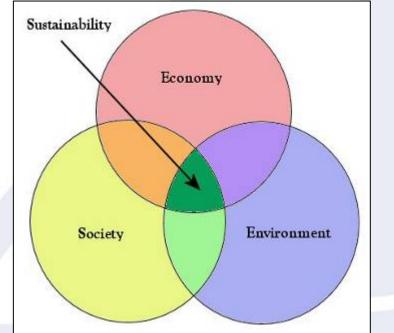
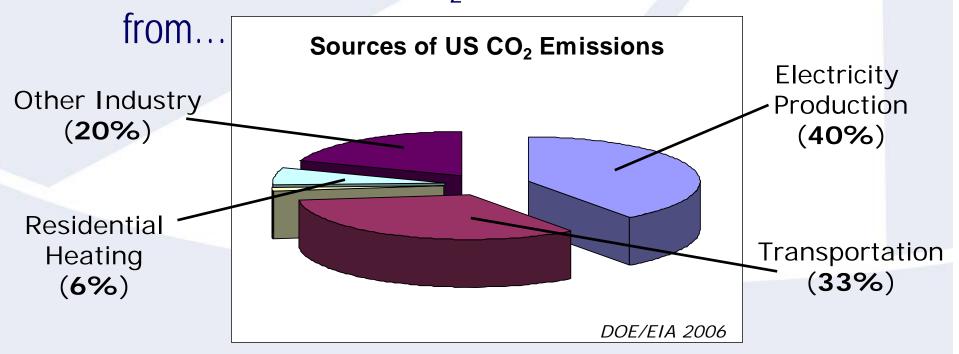
Sustainable Airfield Concrete Pavements

Presented to: CAPTG Workshop


Concrete Pavements and Sustainability **SUSTAINABILITY?**

September 15, 2011

Gary L. Mitchell, P.E. Vice President, Airports and Pavement Technology


What is Sustainability?

- "Meet[ing] the needs of the present without compromising the ability of future generations to meet their own needs" [UN General Assembly 1987]
- Triple bottom line:
 Environmental
 Social
 Economic

What about Cement?

 Although cement is a relatively energy and CO₂ intensive material to manufacture...* cement manufacturing accounts for only 1.5% of US man-made CO₂ – the balance comes

What about Cement?

- Includes CO₂ emissions of cement manufacture for all concrete and masonry uses (not just pavement)...
- Concrete most widely used material on earth, apart from water (www.wbcsd.org)
- Cement industry has lowered the amount of energy required to make a ton of cement by 33% since 1972
- CMS program pledge another 10% by 2020

What about Concrete?

- 92% of paving concrete is comprised of materials that have a low CO₂ footprint...
- All these materials are available/manufactured here in the US, often locally

 Overall sustainability benefits associated with use of concrete for pavements dramatically outweigh the impact of the cement manufacturing process...

LONGEVITY

Concrete Pavements!

• Longevity - hallmark of concrete pavements

- I-10 east of Los Angeles: Originally constructed in 1946 as part of US Route 66
 - Ground in 1965 (1st continuous grinding project in north America) to correct joint spalling and faulting
 - Reground for 3rd lease on life in 1984
 - In 1997 the 51 yr old PCCP was ground again
 - Today the concrete is carrying 240,000 vpd...

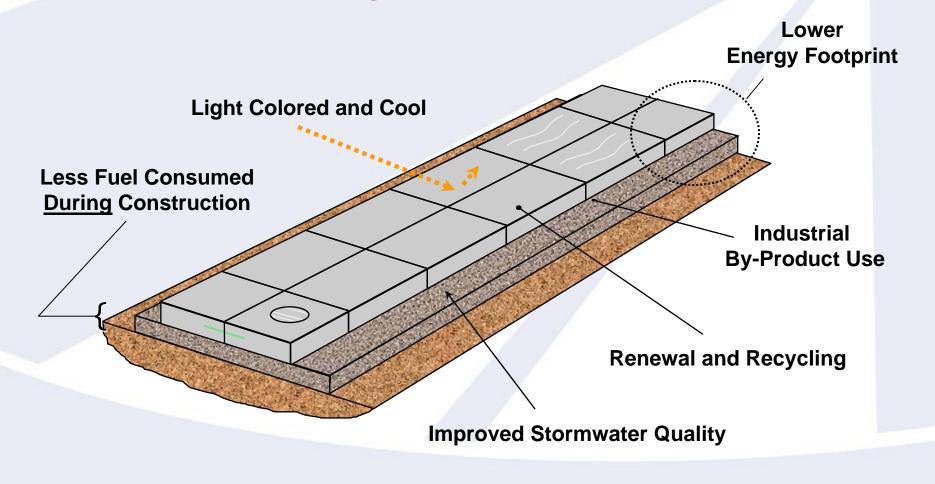
A true testament to concrete pavement sustainability!

Longevity means...

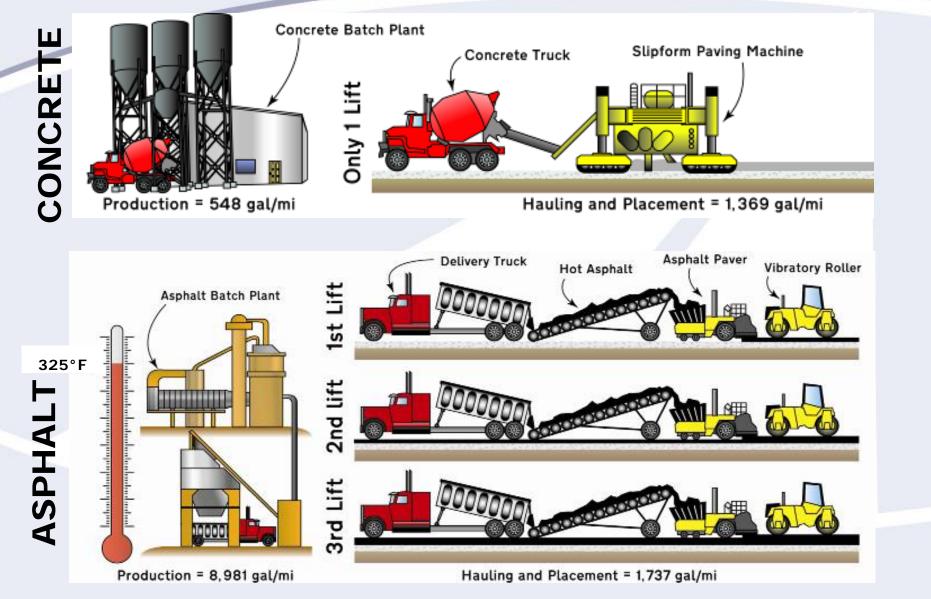
Less-frequent reconstruction
Lower consumption of raw materials

Cement, aggregates, steel

Lower energy consumption


Raw material processing
Rehab and reconstruction

OTHER BENEFITS


Sustainable Benefits Beyond Longevity

Can be achieved through design and mixture optimization!

Lower Fuel Consumption During Construction

Lower Fuel Consumption During Construction

Use of Industrial By-Products

Use of Industrial By-Products

- Concrete is a huge consumer of industrial byproducts
 - Up to 25% Fly Ash (from burning coal)
 - Up to 50% slag cement (from iron smelting of ore)
 - Others, ternary mixtures, and blended cements
- Opportunities for **mixture optimization** that:
 - Lowers cement intensity
 - Reduces disposal
 - Improves performance and longevity
 - Reduces cost!

Use of Industrial By-Products

- Over 15,000,000 tons fly ash used in concrete in US annually (ACCA 2006) and growing...
- Slag cement...
- Slag aggregates (from steel making) are also used in concrete...

Renew-ability, Recycling and Reuse

Renew-ability, **Recycling and Reuse**

 Renewal through grinding
 Caltrans study suggests an additional 17 years service life gained (ARA 2005)

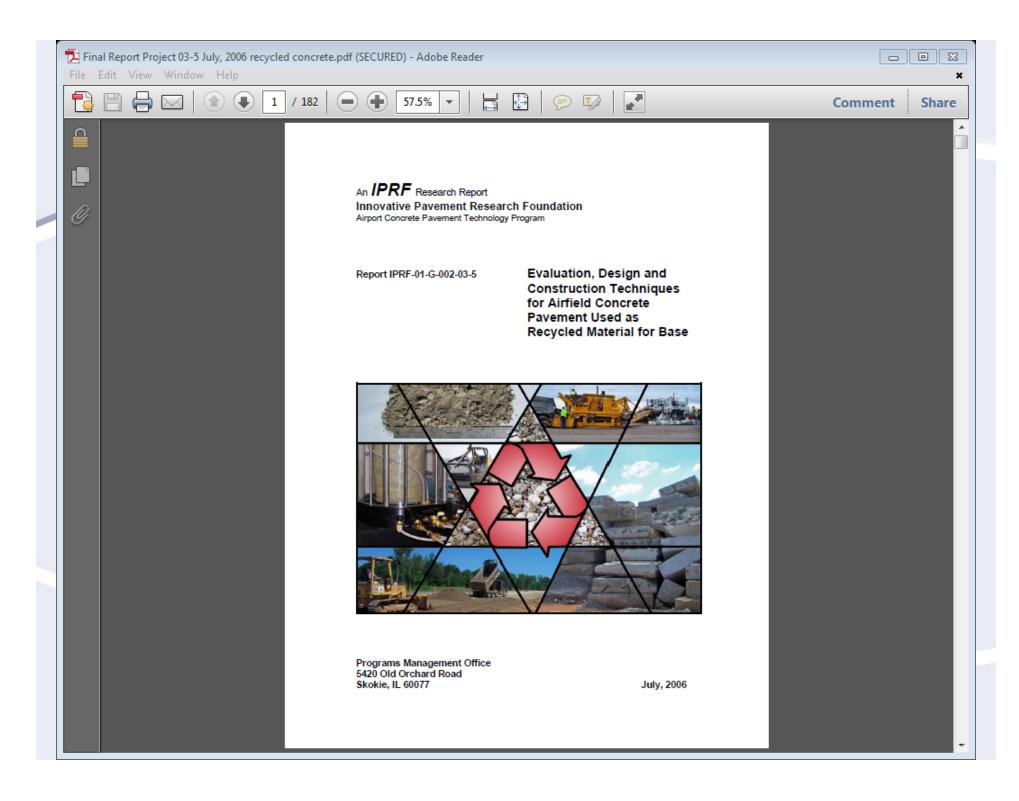
- Design for multiple grind activities...
- Minimal use of energy and natural resources

Renew-ability, <u>Recycling and Reuse</u>

• What is the most recycled material in United States?

 CONCRETE, according to Construction Materials Recycling Association (2008)

> Did you know that 140 million tons of concrete are recycled each year in the United States alone?


Renew-ability, <u>Recycling and Reuse</u>

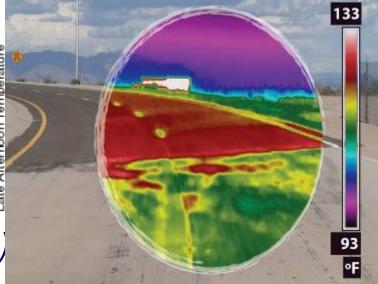
Concrete is 100% recyclable

- Recycled concrete aggregate (RCA) can be used in:
 - new concrete
 - subbases
 - granular fill

 Opportunities for on-site operations that reduce time and energy use...

Light Colored and Cool

Light Colored and Cool


Enhanced Visibility:

Light Colored and Cool

Urban Heat Island Mitigation:

- Urban areas up to 9°F warmer due to UHI
 → greater energy use and resulting pollution
- PCCP is an effective mitigation strategy
 - lower city temperatures
 lower cooling costs
 reduce smog formation
- Pot. energy savings
 \$5B in US alone (LBL'05)

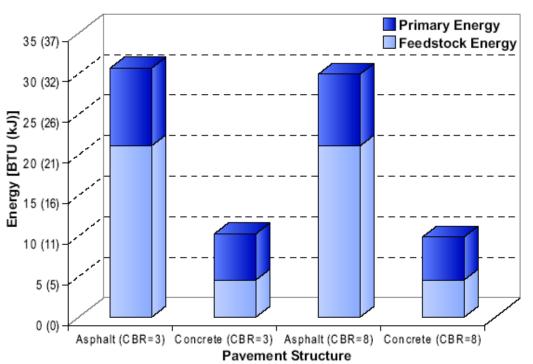

NASA Infrared Imagery Atlanta Airport Mav 1997

-

NA SA Infrared Imagery May 1997 \$50.0 Concrete 54.7 Parking 59.2 63.9 Dark on course 68.4 + 73.0 Asphalt Parking 77.682.2 Lots Concrete 86.7 Parkins 2 91.4 95.9 Denk 100.6 105.3 109.8 Asphalt 114.3 Parking **Congrete Ranways** 2118.0 Lois Atlanta Airport

Lower Energy Footprint

Lower Energy Footprint


- Embodied primary energy is a measure of all energy use associated with the production, delivery and maintenance of a facility over a specific period
- Includes both <u>feedstock</u> and <u>primary</u> energies
- ASMI analyzed total embodied primary energy for various equivalent concrete & asphalt pavement structures for several different road types in various geographic regions over a period of 50 years

(Athena '06)

Lower Energy Footprint

• Considers:

- Extracting
- Processing
- Production
- Construction
- Maintenance
- Rehabilitation

Concrete lower for all classes analyzed!
 23% lower for urban freeways
 71% lower if feedstock energy is considered!

CONCLUSIONS

Summary

Concrete pavement – a truly sustainable choice! Lower overall energy footprint! Long lasting and renewable • Less fuel and CO₂ to construct • Less resource intensive

Summary

Use of industrial by-products,
Renewal, recycle, recapture
Urban heat island mitigation, better visibility

All of this can be achieved through design and mixture optimization!

Cost Comparison ...

- General thought is asphalt pavement is less expensive
- Life-cycle cost of PCC can be less expensive
- PCC can be first cost competitive
- First cost is not always what it seems
- Pensacola, Florida case study ...

PNS Background

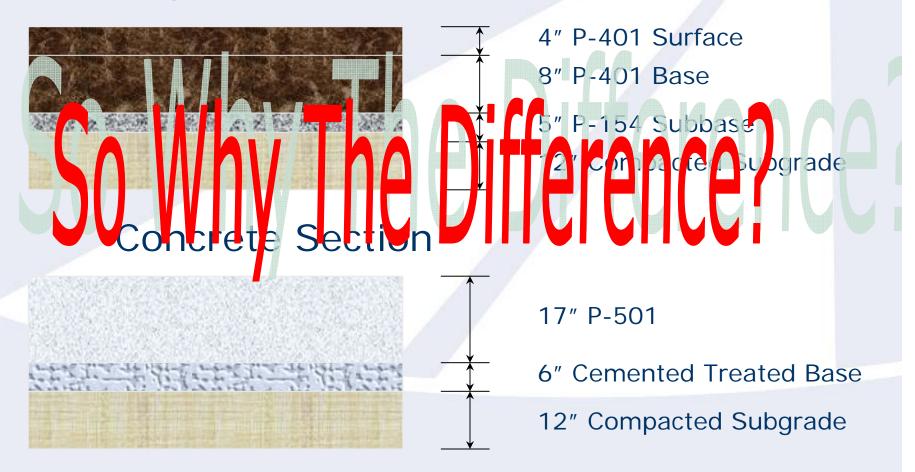
- Fastest growing Airport between Jacksonville and New Orleans
- Planned \$27 million
 RW rehab
- RW 7000' X 150"

Background

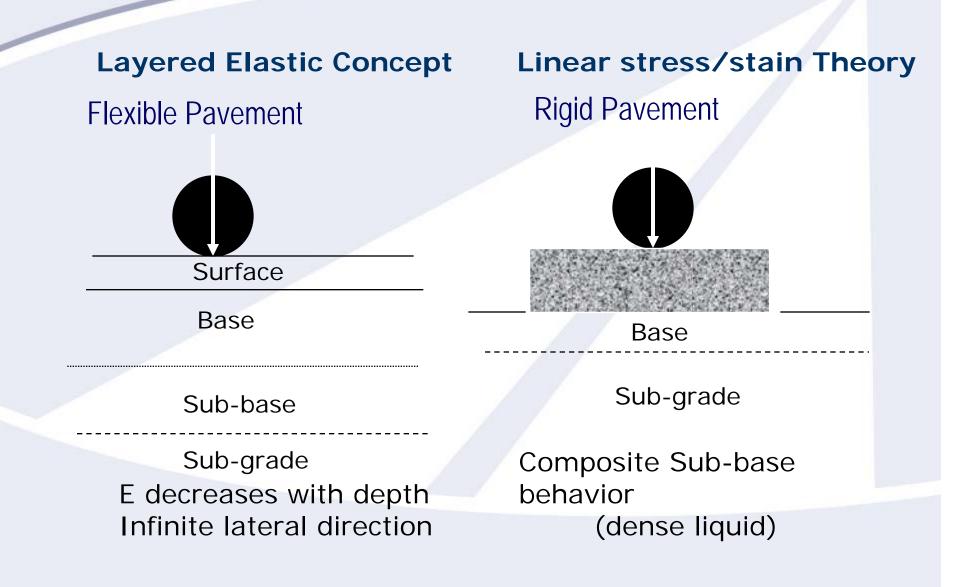
- May 2005 let rehab project
- 12" P-401
 5" P-154
 12" Compacted Subgrade
- Mandatory Pre-bid

- 3 Contractors
- 1 dropped out
- 2 joined forces
- Submitted single bid \$9 million over budget

Rejected the Single Bid


Engineer Revised Plans

Added Concrete Option
 Design Criteria


 Boeing 757 – 5781 annual operations
 Used FAA AC 150/5320-6D
 Equivalent Aircraft as design aircraft
 Used LEDFAA to Compare
 Fleet mix – sums cumulative damage from each aircraft

Pavement Typical Sections

Asphalt Section

The Pavement Systems

What are the issues?

- Concrete design is much more conservative by design
- Fatigue design > 40 years for PCC
- Asphalt typically requires rehab in 15-20 years
- Concrete Contractor can not be competitive "head to head"
- Life-Cycle Cost would "level the playing field"

Life Cycle Cost Analysis (LCCA)

- How do we compare unequal designs with unequal lives?
- No Real Guidance under FAA
- AIP Handbook, Chapter 9, Paragraph 910, Life Cycle Costs in Competitive Sealed Bids
- FAA AC 150/5320-6D, Appendix 1, Economic Analysis, Example Problem

LCCA Development

- Format Developed Based on FAA Model
- Received Input from ACPA, AI and FAA
- General Parameters were:
 - Design Life 20 Years (FAA Requirement)
 - Concrete Expected Life 40 Years
 - Asphalt Expected Life 30 Years
 - Discount Rate (Inflation Factor) 5%
 - Maintenance Requirement for each alternative

Maintenance Requirements

- Concrete Runway Maintenance Activities
 - Year 0 Insertion of TOTAL BID PRICE of Concrete Bid
 - Year 15 Joint Seal Replacement (Maintenance)
 - Year 19 Crack Sealing (Maintenance)
 - Year 20 Estimated 5% Slab Replacement (Maintenance)
- Asphalt Runway Maintenance & Rehabilitation Activities
 - Year 0 Insertion of TOTAL BID PRICE of Asphalt Bid
 - Year 6 Pavement Preservation System (Maintenance)
 - Year 13 Pavement Preservation System (Maintenance)
 - Year 15 3" Mill and Overlay (Rehabilitation)

Development of Salvage Value

- Concrete Runway LCCA
 - Took Full Bid Price at Year 0 and Used Straight Line Depreciation over 20 Year Design Period
 - Total Cost / 40 Years x 20 Years (Remaining Life) x Present Worth Factor at Year 20 = Salvage Value
- Asphalt Runway LCCA
 - Took Full Bid Price at Year 0 and Used Straight Line Depreciation over 20 Year Design Period PLUS Mill & Overlay at Year 15 over 5 Year Remaining Design Period
 - Total Cost / 30 Years x 10 Years (Remaining Life) x Present Worth Factor at Year 20 PLUS Mill & Overlay Cost / 15 Years x 10 Years (Remaining Life) x Present Worth Factor at Year 20 = Salvage Value
- Submitted Electronic Spreadsheets to All Bidders, Plan Holders & Plan Rooms

Bids Received

Life-Cycle Cost Analysis - Pensacola Airport Runway 17/35

As-Read Bid Results	PCCP	Asphalt					
Bidder 1	\$23,591,682.40	\$22,019,551.24					
Bidder 2	\$26,245,083.56	\$21,767,513.21					
Bidder 3	\$30,053,562.17	No Bid					
Bidder 4	\$32,328,955.70	No Bid					

Present Worth Model

$$PW = C + \sum_{i=1}^{m} M_i \left(\frac{1}{1+r}\right)^{n_i} - S\left(\frac{1}{1+r}\right)^z$$

- PW = Present Worth
- C = Initial Construction Cost
- m = number of maintenance or rehab activities
- M_i = Cost of the ith activity

- r = discount rate
- n_i = number of years from the present of the ith activity
- S = salvage value at the end of the analysis period
- Z = length of the analysis period

Excel Spreadsheet - PCC Option

		Runway 17-35 Reconstruction								
	Pensacola Regional Airport									
		Life Cycle Cost Analysis E				ervices. Inc.				
				ncrete Run						
DESIGN LIFE	E (N):			2	0					
EXPECTED				4	0					
INFLATION F	ACTOR (%):				5					
BASE BID -	SCHEDULE "A" CONCRETE F	RUNWAY								
YEAR	ACTIVITY	ITEM	UNIT	COST	QUANTITY	TOTAL	PRESENT		PF	
(N)		DESCRIPTION		PER		COST	WORTH		V	
				SYD			FACTOR (5%)			
0	INITIAL CONSTRUCTION	17" PCC/6"CTB	SYD	\$ 181.04	130,309	\$23,591,682.40	1.0000	-	\$	
1							0.9524	-		
2							0.9070	-		
3							0.8638	-		
4							0.8227			
5							0.7835			
6							0.7462			
7							0.7107	-		
8							0.6768	-		
9							0.6446	-		
10 11							0.6139	-		
12							0.5847	-		
12							0.5303	-		
14							0.5051		-	
15	MAINTENANCE	JOINT SEAL REPLACEMENT	LF	\$ 1.70	113,233	\$192,496				
16	MAINTENANOE	Sourt GEAE REI EAGEMENT		φ 1.70	113,233	ψ152,450	0.4581	-		
17							0.4363	-		
18							0.4155	-		
19	MAINTENANCE	CRACK SEAL	SYD	\$ 1.30	130,309	\$169,402	-	-		
20	MAINTENANCE	5% SLAB REPLACEMENT	SYD	\$ 100.00		\$651,545	-	-		
SUBTOTAL						. ,		\$		
	AGE VALUE									
PRESENT W				\$ 150.04	1			\$		

Excel Spreadsheet - AC Option

		Runway	17-35 Reco	onstr	uction				
		Pensac	ola Region	al Ai	rport				
		Life Cycle Cost Analysis	s Evaluatio	n - A	PAC - S	outheast, Inc.			
		Low Bid Asp							
		·							
DESIGN LIF	E (N):				20				
EXPECTED	LIFE:				30				
INFLATION	FACTOR: (%)				5				
SCHEDULE	"B" ASPHALTIC CONCRETE	RUNWAY							
YEAR	ACTIVITY	ITEM	UNIT	(COST	QUANTITY	TOTAL	PERSENT	PRESENT
(N)		DESCRIPTION					COST	WORTH	WORTH
								FACTOR	
0	INITIAL CONSTRUCTION	12" ASPHALT/5" SUBBASE	SYD	\$	167.05	130,309	\$21,767,513.21	1.0000	\$21,767,513.21
1						,		0.9524	\$ -
2								0.9070	-
3								0.8638	\$ -
4								0.8227	\$ -
5								0.7835	\$ -
6	MAINTENANCE	PAVEMENT PRESERVATION SYSTEM	SYD	\$	2.00	130,309	\$260,618	0.7462	\$ 194,477.16
7								0.7107	\$ -
8								0.6768	\$ -
9								0.6446	\$ -
10								0.6139	\$ -
11								0.5847	\$ -
12								0.5568	\$ -
13	MAINTENANCE	PAVEMENT PRESERVATION SYSTEM	SYD	\$	2.00	130,309	\$260,618	0.5303	\$ 138,211.29
14								0.5051	\$ -
15	REHABILITATION	MILL AND OVERLAY	SYD	\$	15.12	130,309	\$1,970,272	0.4810	947,734.56
16								0.4581	-
17								0.4363	\$ -
18								0.4155	-
19								0.3957	-
20								0.3769	\$ -
SUBTOTAL									\$ 23,047,936.22
LESS: SALAVAGE VALUE									(\$3,229,698.82)
PRESENT V				\$	152.09				\$ 19,818,237.41
Notes	: Salvage value is based on s	traight-line depreciation of the expected life of	the last rehab	ilitatio	n item (sa	me as concrete).			

Bid Comparison After LCCA

Asphalt - \$19,818,237

Concrete - \$19,551,146 √ Concrete is low bid

Difference - \$267,091

Summary

- Process Isn't for Every Project
- USE Full Bid Price in Year 0
- Make Sure All Maintenance Activities & Rehabilitation Costs are Current, Based on Recent Bids
- Establish reasonable salvage value for each alternative
- Level "playing field" brings competition and value
- FAA Recognized the need for guidance
- Airport Asphalt Pavement Technology Program Report provides guidance

In Conclusion...

- US concrete paving industry strongly supports sustainable development
- Sustainability not often considered when making pavement choices... they should.
- Environmental and social sustainability can <u>and does</u> go hand-in-hand with economic efficiency.
- Level playing field is important to introduce competition for sustainable pavements
- This is a real opportunity for all of society!

THANK YOU!

Please contact Gary L. Mitchell with questions or comments: gmitchell@acpa.org