

2011 CAPTG WORKSHOP

THE EVOLUTION OF SUSTAINABILITY IN AIRFIELD PAVING SPECIFICATIONS

Ludomir Uzarowski, Ph.D., P.Eng., Associate, Golder Associates Ltd. Rabiah Rizvi, B.A.Sc., Golder Associates Ltd.

> Montreal, Quebec September 15, 2011

PRESENTATION OUTLINE

- Introduction to Sustainability
- Sustainability in Pavement Applications
- Example of Highway Pavement Sustainability Evaluation
- Airfield Pavement Specifications in Canada
- Amended P-401 Specification
- AAPTP Program
- Airfield Pavement Life Cycle Cost Analysis
- Non-Load Related Pavement Damage
- Additional Aspects
- Conclusions

WHAT IS SUSTAINABILITY?

Sustainable development is defined in the Brundtland Report in 1987 as:

"..... development that meets the needs of the present without compromising the ability of future generation to meet their needs"

WORLD TRENDS

- Global Warming
- Green House Gas (GHG) emissions
 - Transportation responsible for 28% of GHG emissions 85% of this due to road transportation
- Rapid population growth in urban areas
- Everyone seeking greater affluence
- World ecosystem increasingly impacted by population growth, increasing affluence and technology growth
- Transport is a significant component of human consumption

September 27, 2011

ECOLOGICAL FOOTPRINT

- Every person consumes resources to maintain their lifestyle
- Combined impact of this consumption has an impact on the earth
- Ecological footprint measures what we consume in terms of productive land and water needed to produce these resources and also too absorb all the waste we make
- Components of consumption that contribute to this footprint are food, housing, services, energy, transportation, consumer goods, and services

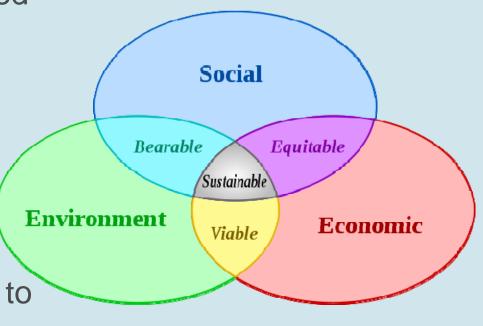
WHAT IS THE CONCERN?

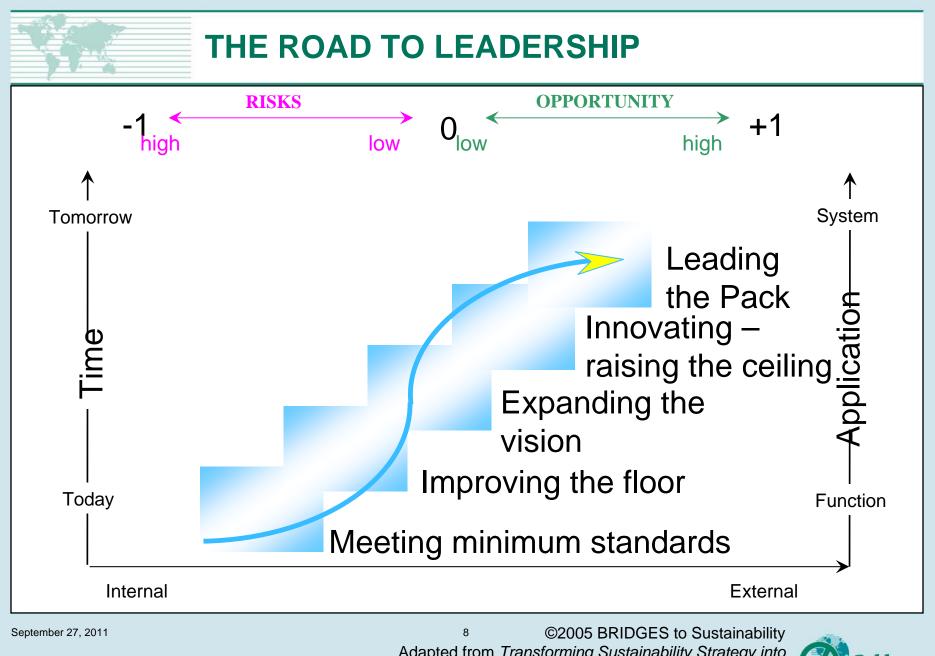
In 1900

- There were 5.6 ha of biologically productive land available per world citizen
- Average Canadian needed 1 ha to support their lifestyle

In 2000

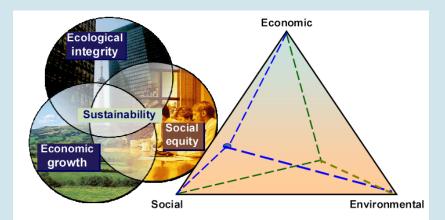
- Estimated that only 2 ha available per person
- Current consumption levels
 - United States 12 ha/person
 - Canada 8 ha/person
 - Italy 6 ha/person


CURRENT TREND IS NOT SUSTAINABLE!



TRIPLE BOTTOM LINE

- To achieve sustainability three aspects need to be considered
 - Economic associated costs
 - Environment impact to our surroundings
 - Social impact on the general public
- Technical aspects also need to be considered in addition to the triple bottom line to achieve sustainability



Adapted from *Transforming Sustainability Strategy into Action*, Beloff et al, 2005

Transportation and Sustainability

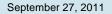
- Sustainability principles applied to every stage
 - Airport planning
 - Development
 - Construction
 - Operations
 - Maintenance

- Cooperation between owners and their engineers
- Achieve balance between technical, economic, social and environmental factors

Sustainable Pavements

- Sustainable Pavements safe, efficient, durable, minimum impact on environment
- Criteria
 - Minimize use of natural resources
 - Reduced energy consumption
 - Reduced GHG emissions
 - Limiting Pollution
 - Improving safety and risk prevention
 - Reduced user delay and increased comfort
 - Longer lasting
 - Innovative
- Cannot compromise pavement performance

September 27, 2011



SUSTAINABLE PAVEMENTS

Social

- Skills training and accreditation
- Improved safety
- Decreased user delay costs
- Economic
 - Use of recycled materials reduced costs
 - Reduced waste disposal costs
 - Reduced haulage costs
 - Reduced quantity of new materials

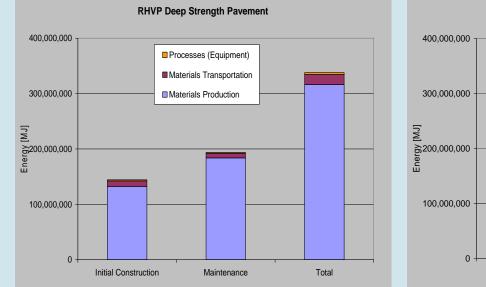
SUSTAINABLE PAVEMENTS

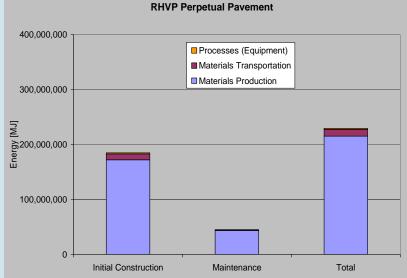
Environment

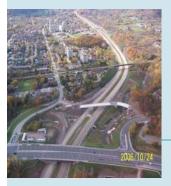
- Increased recycling and re-use of waste material
- Reduced energy consumption from reduced haulage
- Preventive maintenance to prolong serviceable life
- Conservation of finite resources
- Reduced use of bituminous products through recycling
- Reduced GHG emissions through reduced haulage requirements

ROAD PAVEMENT SUSTAINABILITY EVALUATION

- Examples of available programs
 - Green Road FHWA (University of Washington)
 - GreenPave Ontario Ministry of Transportation (MTO)
 - PaLATE
 - GoldSET



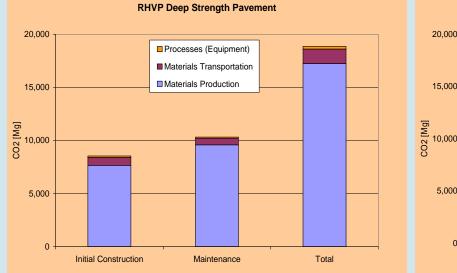


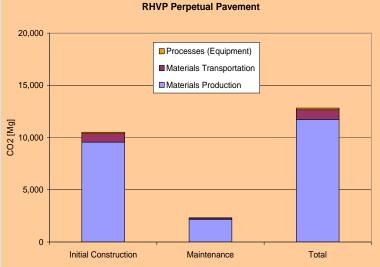

September 27, 2011

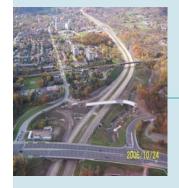
Reduced Environmental Impacts

Life Cycle Energy Consumption

Conventiona


Perpetual


Pavement Life-cycle Assessment Tool for Environmental and Economic Effects (PaLATE): A. Horvath



Reduced Environmental Impacts

Life Cycle CO₂ Emissions

Conventional

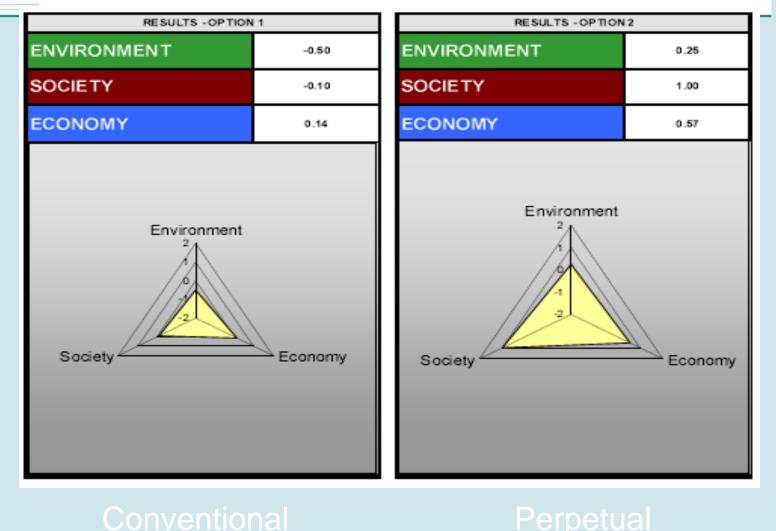
Perpetual

Pavement Life-cycle Assessment Tool for Environmental and Economic Effects (PaLATE): A. Horvath

Sustainability Comparison-Environmental

	ENVIRONMENTAL ASPECTS			Option 1					Option 2					
		-2	-1	0	1	2	-2	-1	0	1	2			
	Use of Natural Resources		-											
	New Aggregates				x						x			
	Bituminous Materials				x				x					
	Atmospheric Emissions													
	Air Emissions		x							Х				
4	Dust and Noise		х				Х							
	Waste Generation													
	Excess Material Off-site		x						x					
	Value-Added Re-Use			x					x					
	Consumed Energy													
	Consumed energy		х						x					
	Transportation Impact													
	Transportation impact	x								X				

Sustainability Comparison-Social


SOCIAL ASPECT	Option 1					O	otio	n 2	
Health and safety									
Local resident safety			X					X	
Worker safety		x							Х
Impact on community									
		-	-	-		-	-		
Work pollution (noise, dust, visual aspects, etc)			x					x	
Duration of works		x						X	
Quality of Life (Frustration, ride quality, etc.)	x								Х
Adding value to the road corridor				x					Х
Equity									
Training of employees			x				x		
Preferably local job			x				x		
Corporate image									
Corporate image			x						x
Future Maintenance Needs									
On-going local employment					x	x		A	SOC

Sustainability Comparison-Economic

ECONOMIC ASPECT								
	0	ptic	on 1	Option 2				2
Economic performance								
Total construction cost			х		x			
Life Cycle Cost	x							x
Local suppliers								
Local suppliers		Х			х			
Sustainability								
Durability		X						x
Level of maintenance and repair								
Level of Maintenance and repair		x						x
Technological aspect								
Research and development		x					x	
Technological uncertainties			x		x			

Sustainability Comparison-Combined

- Follow technical standards
- Optimizing other aspects without compromising quality and pavement performance
- Pavement design life
- Life cycle cost analysis
- Better materials
 - New/better asphalt mixes
 - Performance graded asphalt cement (PGAC)

- Recycling
 - Reclaimed Asphalt Pavement (RAP)
 - Hot In-Place Recycling (HIR)
 - Cold In-Place Recycling (CIR)
 - Full Depth Reclamation (FDR)
 - Foamed asphalt stabilization
 - Pavement reclamation
 - Recycled concrete and granular materials

- Innovative mix verification testing
 - Mechanistic properties
 - Rutting resistance
 - Cracking endurance
 - Modulus
 - Low temperature cracking

- Advanced testing to evaluate pavement condition
 - Falling Weight Deflectometer (FWD) structural condition
 - Ground Penetrating Radar (GPR) layer thickness and profiles
 - Inertial profiler smoothness
- Preventive maintenance
 - Extend pavement life
 - Address non-load related distresses

HOT-MIX ASPHALT PAVING

Review of Airport Paving Specifications SWIFT 2008

VARIOUS PAVING SPECIFICATIONS

- Greater Toronto Airport Authority (GTAA)
- Department of National Defence (DND)
- Calgary Airport Authority (CAA)
- Winnipeg Airports Authority (WAA)
- Saskatoon International Airport (SIA)

VARIOUS PAVING SPECIFICATIONS

- Vancouver International Airport Authority (YVR)
- Canadian Airfield Pavement Engineering Reference (CAP)
- Public Works and Government Services Canada (PWGSC)
- Reference to Federal Aviation Administration (FAA)

CANADIAN AIRFIELD PAVEMENT ENGINEERING REFERENCE

HOT-MIX ASPHALT BINDER COURSE

- Gradation
- Asphalt cement content and grade

					Gradatio	n						
Sieve Size (mm)						Percent P	assing					
	GTAA DN		1D	D CAP, PW		WGSC CA		WAA		FAA (25	mm Mix)	
	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum
25.0	100	100	100	100	100	100	100	100	100	100	100	100
19.0	90	100	90	100	-	-	-	-	90	100	76	98
16.0	75	95	80	92	-	-	-	-	-	-		
12.5	-	-	70	85	70	85	70	85	70	85	66	86
9.5	50	75	58	78	-	-	-	-	60	76	57	77
4.75	30	50	40	65	40	65	40	65	40	60	40	60
2.36	20	40	30	53	-	-	-	-	-	-	26	46
2.00	-	-	-	-	30	50	30	50	30	50		
1.18	10	35	23	43	-	-	-	-	-	-	17	37
0.600	5	26	16	34	-	-	-	-	-	-	11	27
0.425	-	-	-	-	15	30	15	30	15	30		
0.300	3	15	10	25	-	-	-	-	-	-	7	19
0.180	-	-	-	-	5	20	5	20	5	20		
0.150	1	7	5	15	-	-	-	-	-	-	6	16
0.075	1	5	2	7	3	8	3	8	3	8	3	6
Asphalt cement content (%)	5.0	5.4	5.0	-	-	-	-	-	4.5	6.0	4.5	7.0
Asphalt cement grade	PG 6	64-28	Pen 8	0-100	Site specific	(pen or PG)	P120	-150A	Pen 1	50-200	PG site	specific

HOT-MIX ASPHALT SURFACE COURSE

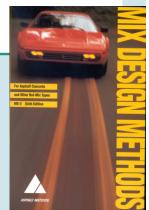
- Gradation
- Asphalt cement content and grade

					(Gradation								
Sieve Size (mm)		Percent Passing GTAA DND CAP, PWGSC CAA, SIA WAA YVR FAA (19 mm M												
	GT	AA	DI	ND .	CAP, P	WGSC	CAA	, SIA	W	AA	Y	VR	FAA (19	mm Mix)
	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum
19.0	100	100	-	-	-	-	-	-	-	-	100	100	100	100
16.0	95	100	100	100	-	-	-	-	100	100	-	-	-	-
13.2	90	98	-	-	-	-	-	-	-	-	-	-	-	-
12.5	80	95	87	95	100	100	100	100	87	95	79	95	79	99
9.5	75	85	76	90	-	-	-	-	76	90	68	75	68	88
4.75	45	65	55	75	55	75	55	75	55	75	48	55	48	68
2.36	35	50	40	60	-	-	-	-	-	-	33	45	33	53
2.00	-	-	-	-	35	55	35	55	35	55	-	-	-	-
1.18	25	40	27	47	-	-	-	-	-	-	20	35	20	40
0.600	15	30	18	35	-	-	-	-	-	-	14	25	14	30
0.425	-	-	-	-	15	30	15	30	15	30	-	-	-	-
0.300	7	20	10	25	-	-	-	-	-	-	9	20	9	21
0.180	-	-	-	-	5	20	5	20	5	20	-	-	-	-
0.150	1	8	5	15	-	-	-	-	-	-	6	15	6	16
0.075	1	5	2	7	3	8	3	8	3	8	3	6	3	6
Asphalt cement content (%)	4.8	5.2	4.8	-	-	-	-	-	5.0	6.0	> 5.0*	-	5.0	7.5
•	PG 70-28 PI	MA surface	Pen 8	0-100	Site spec	ific (pen)	CAA - Per	120-150A	Pen 1	50-200	PG	54-22	PG site	specific
	PG 64-28	3 binder					SIA - Pen	150-200A						

* By dry weight of aggregate.

Materials

Material Type	Specification Limits	Specifie	cations Co	mpared	Remarks
		ltem included		Total	
		Yes	No		
Asphalt cement:					
PG grade		2	6	8	
Pen grade		6	2	8	
Aggregate:					
Dolomitic rock or trap rock		1	7	8	GTAA
Crushed stone		8	-	8	
Crushed gravel		7	1	8	
Natural sand, max	10%	2	6	8	


Material properties

Prpoerties/Construction Requirements	Specification Limits	Specifi	cations Co	mpared	Remarks
		ltem included		Total	
		Yes	No		
Los Angeles degradation, max	25% - 35%	7	1	8	
Micro Deval, max	15% - 25%	1	7	8	DND
Absorption, coarse aggregate, max	1.75% - 2.2%	8	-	8	
Fractured paritcles, min	100%	1	7	8	GTAA
	60% - 90%	7	1	8	
Sand equivalent, min	40% - 50%	8	-	8	
Soundness loss, max	12% - 16%	8	-	8	
Loss by washing, max	1.0% - 2.0%	8	-	8	
Lighweight particles, max	1.5% - 3.0%	8	-	8	
Flat and elengated particles, ratio 5, max	8.0% - 15.0%	8	-	8	SIA - ratio 3
Liquid limit, max	25	2	6	8	
Plasticity Index, max	6	2	6	8	
Petrographic Number, max	135 - 160%	1	7	8	DND
Polished Stone Value, min	60	1	7	8	GTAA
Polishing characterisitcs		5	3	8	

Mix design

Prpoerties/Construction Requirements	Layer	Specification Limits	Specifi	cations Co	mpared	Remarks
	,•.			cluded	Total	
			Yes	No		
Compactive effort, blows per face		75	4	4	8	
		50	4	4	8	
Marshall stability, kN, min						
75 blows	binder	10 - 14	4	4	8	
	surface	12 - 14	4	4	8	
50 blows	binder	9.0	4	4	8	
	surface	9.0 - 10.0	4	4	8	
Flow, mm	binder	2 - 4	8	-	8	
	surface	2 - 4	8	-	8	
Air voids, %	binder	3 - 5	8	-	8	
	surface	2.5 - 5	8	-	8	
VMA, %, min	binder	13 - 14.5	8	-	8	
	surface	13 - 15	8	-	8	
Marshall retained stability, %,min	binder	75	5	3	8	
	surface	75	5	3	8	
	surface	85	1	7	8	SIA
Minimum film thicnkness			2	6	8	
TSR, %, min	surface	75 - 80	2	6	8	YVR
RAP	binder	15%	1	7	8	YVR
	surface		-	8	8	

Construction

Construction Requirements	Location	Specification Limits	Specifi	Specifications Com			
			ltem in	Total			
			Yes	No			
Echelon paving			7	1	8		
MTV or Shuttle Buggy			3	5	8		
Test strip			8	-	8		
Compaction, Marhsall density	mat	100%	1	7	8		
		98%	6	2	8		
		96%	1	7	8		
	joint	97%	1	7	8		
Maximum lift thickness, mm	surface	50	2	6	8		
	binder	65 - 100	2	6	8		
Minimum air temperature		5°C - 7°c	8	-	8		
Minimum compaction temerature		100°	7	1	8		
Joint offset	transverse	600 mm	8	-	8		
	longitudinal	150 mm	8	-	8		

Surface requirements

Construction Requirements	Location	Specification Limits	Specifi	Specifications Co		
			ltem in	ltem included		
			Yes	No		
Smoothness:					8	
California Profilograph, mm/km, max	runway	80 mm/km	1	7	8	
	taxiway, apron	110 - 120	2	6	8	
Finish tolerances, mm	surface	3.0 - 5.0	8	-	8	
	binder	6.0	1	7	8	
Coefficient of friction, min		0.75	1	7	8	
Segregation			1	7	8	

Acceptance

Construction Requirements	Specifi	cations Co	mpared	Remarks
	ltem included		Total	
	Yes	Yes No		
Acceptance:			8	
asphalt cement content	8	-	8	
gradation	8	-	8	
air voids	8	-	8	
stability	8	-	8	
field compaction	8	-	8	
joint compaction	1	7	8	
smoothness	8	-	8	
grade	1	7	8	
End product specification	1	7	8	CAA
Payment adjustment	1		8	DND

ISSUES WITH AIRFIELD PAVING

- Inconsistent airfield paving specifications
- Large differences between road and airfield paving
- High costs of asphalt and Portland cement concrete paving

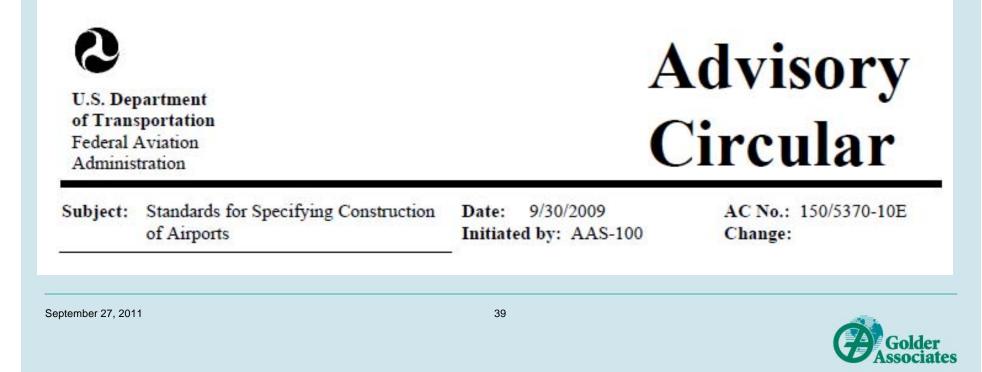
Properties and and Properties and Prop

ISSUES WITH AIRFIELD PAVING

- Hot-mix asphalt paving technology
 - Significant improvement in the last 10 years
 - Materials
 - Procedures
 - Long lasting (perpetual) pavement
- Marshall vs. Superpave mixes
- Performance graded vs. penetration graded asphalt cements
- Mix materials and gradations
 - Pavement texture
 - Pavement frictional characteristics
- Asphalt paving specifications improvements
 - End product specification (EPS)
 - QC/QA procedures

- Discussion should involve
 - Agencies/owners
 - Consultants
 - Contractors
 - Materials suppliers
 - Universities
- Action plan required
- Positive examples
 - Canadian Airfield Pavement Engineering Reference
- CAPTG?

INITIAL SUGGESTIONS



- Work close with road agencies
- Define the properties that should be tested
- Address testing procedures
 - Sieve sizes
 - Other
- Address mix design procedures and requirements
- Address QC/QA procedures
- Address acceptance procedures
- Consider sustainability!!!

Flexible Surface Courses P-401

RAP

- Up to 30% allowed
- If more than 15% of RAP PG grade softening should be considered

TABLE 5. MARSHALL ACCEPTANCE LIMITS FOR STABILITY, FLOW, AIR VOIDS, DENSITY

TEST PROPERTY Number of Blows	Pavements Designed for Aircraft Gross Weights of 60,000 Lbs. or More or Tire Pressures of 100 Psi or More 75 Specification Tolerance Limits		Pavements Designed for Aircraft Gross Weights Less Than 60,000 Lbs. or Tire Pressures Less Than 100 Psi 50 Specification Tolerance Limits	
	L	U	L	U
Stability, minimum, pounds	1800		1000	
Flow, 0.01-inch	8	16	8	20
Air Voids Total Mix, percent	2	5	2	5
Surface Course Mat Density, percent	96.3	[101.3]	96.3	[101.3]
Base Course Mat Density, percent	95.5	101.3]	95.5	[101.3]
Joint density, percent	93.3		93.3	

Table A. Binder Grade Selection and Grade Bumping Based on Gross Aircraft Weight.

Aircraft Gross Weight (pounds)	High Temperature Adjustment to Base Binder Grade		
(Founda)	Pavement Type		
	Runway	Taxiway/Apron	
Less than 12,500			
Less than 60,000		1	
Less than 100,000		1	
Greater than 100,000	1	2	

NOTES:

1. PG grades above a -22 on the low end (e.g. 64-16) are not recommended. Limited experience has shown this to be a poor performer.

2. PG grades below a 64 on the high end (e.g. 58-22) are not recommended. These binders often provide tender tendencies.

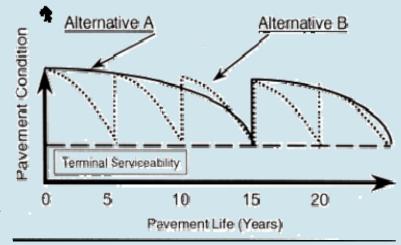
3. PG grades above a 76 on the high end (e.g. 82-22) are very stiff and may be difficult to work and compact.

- (1) Stability
- (2) Flow
- (3) Air voids
- (4) Mat density
- (5) Joint density
- (6) Thickness
- (7) Smoothness
- (8) Grade

AAPTP PROGRAM

AAPTP Projects

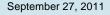
- "Use of RAP in Airfield HMA Pavements", AAPTP No 05-06
- "Life Cycle Cost Analysis for Airport Pavements", AAPTP No 06-06
- "Techniques for Prevention and Remediation of Non-Load Related Distresses on HMA Airport Pavements", AAPTP No 05-07



LIFE CYCLE COST ANALYSIS

- Economic analysis tool
- Enables comparison of different alternatives with different maintenance requirements during life cycle
- Alternatives with higher capital costs may have lower
 - Maintenance costs
 - Longer design life
 - Greater salvage value
- LCCA identifies alternative that provides best economic value for investment

AAPTP REPORT 06-06


- Describes life cycle cost analysis for airfield pavement
- Spreadsheet Implementation
- Flexible and rigid pavements
- Describes and provides guidance on all aspects of LCCA
- Report includes
 - Pavement construction, maintenance and rehabilitation activities for airfield pavements
 - Typical costs and sources of data for costs
 - Use of airport PMS for LCCA
 - Review of other LCCA methods
 - Guidelines for conducting LCCA

LCCA Framework

- Analysis Period
 - Include at least 1 rehabilitation for all alternatives
 - Should not extend beyond period of reliable forecast
- Analysis technique
 - Net Present Value or Equivalent Uniform Annual Cost
- Discount rate
 - Function of interest rate and inflation rate
- Cost factors
 - Direct/owner costs and indirect/user costs
- Statistical Computation Approach
 - Deterministic or Probabilistic

PAVEMENT PERFORMANCE AND M&R

- Service life
 - Initial design life
 - Life after rehabilitation treatments
 - Estimated in various ways
- M&R Treatments
 - PMS and historical records
 - Timing of extents of treatment
 - Includes routine activities, preventive activities and major repairs

OWNER COSTS AND USER COSTS

CCA Parameters			Help
General Airport/ Project Information	Project Details	SR LCCA Parameters	
Add Spec/Pay Items & Unit Costs	ylene Spec/Pay Boom & Unit Cests Ulerary		
create/Modify Alternat	ves	Run LCCA Simulation	
Absenative 1	Alternative 2	Involution	
Alternative 3	Alternative 1	Territo Santifica	
/iew Simulation Result		Save/Exit	
New Simulation Result	S View Deterministic ENAC Table	Save/Exit	

CCA Parameters	-	
Analysis Base Year:	2010	
Initial Construction Year:	2010	
Analysis Period:	40	years
Salvage Value:	C None	
	Prorated Life	
Analysis Variables:	DEFINE/EDIT	
Supplemental Costs:	I▼ Administrative 5	%
	Engineering S	%
	Maint. of Traffic 5	%
ndirect/User Costs -		
C Include C Do Not Incl	ude	
Total Airport Daily Revenue	e (\$): 150,00	0
Projected Revenue Growth	Rate, compound (%):	3.00
	rowth rate instead of co	mpound
Clear Form	Cancel	OK

September 27, 2011

Owner costs

- Cost of building, maintaining and rehabilitating pavements
- Quantify salvage value at the end of service life

User costs

- Costs incurred by airport users includes passengers and airlines
- Type and duration of pavement facility restriction unique to each airport
- Reduction in airport operations, passengers and cargo
- Loss of daily operating revenue

NON-LOAD RELATED DISTRESS

- Distresses caused by changes in HMA temperature, moisture, and climatic exposure
- 20% of HMA-surfaced airfield pavement exhibit some form of non-load related distress
- Type of distresses
 - Block cracking
 - Longitudinal and transverse cracking
 - Ravelling and weathering

CONTRIBUTING FACTORS

- Climate conditions
 - Thermal shrinkage stresses
 - Warping stresses
 - Age hardening of binder
 - Moisture
 - Solar radiation

- Crude sources and binder properties
- HMA mix design
 - Aggregate absorptivity
 - Binder PG Grade
 - Binder Additives

REMEDIES FOR NON-LOAD RELATED DISTRESSES

- Pavement preservation program is critical
- Preventive Maintenance
 - Crack sealing
 - Surface treatments fog seals and slurry seals
 - Thin overlays
 - Microsurfacing
 - Ultrathin bonded wearing course
- Apply treatments before damage becomes visible
 - Take advantage of PMS data
- Hot in-place recycling (HIR) or cold in-place recycling

- Extensive surface cracking
- Pavement is structurally sound

GEOTHERMAL SYSTEMS AT AIRPORTS

- Using geothermal systems for runways
 - Heating in winter
 - Removal of ice and snow build up
 - Sensors
 - Cooling is summer
 - Heat recharge
- Europe
 - UK
 - Heathrow
 - Gatwick
 - Sweden

September 27, 2011

Norway

CONCLUSIONS

- The days of focusing on meeting minimum technical requirements and basic LCCA analysis is coming to an end
- Consider four aspects of pavement sustainability
- Take advantage of existing advanced paving technology
- Take advantage of PMS
- Implement pavement preservation program
- Consider longer pavement life
- Highway pavements are much more advanced in sustainability than airport pavements
- Use available sustainability evaluation systems

THANK YOU! QUESTIONS?

luzarowski@golder.com

