

Existing and Potential Maintenance Techniques for Low-Volume/Municipal Airport Runways

Jean-Martin Croteau, P.Eng. Technical Director ColasCanada Inc.

Outline

- Low-volume/municipal airport
 - Isolated location challenges
- Airport runway pavements
 - Loading characteristics
 - Other particularities
- Typical degradations of runway pavements
- Maintenance techniques
 - > Existing
 - > Potential

Burlington Airpark Airport

Burlington

Spectrum Airways Flight Training and Career College

Dawson City Airport

Dawson City/Airport

Isolated Location Challenges

- Mobilization challenges
 - > Sea, air, ice road, long haul, rough access road
- Small communities
 - Hars' ANY ROUTINE TASK BECOMES DIFFICULT
 - > Short consum
 - Permafrost challenges
- Limited resources
 - > Equipment ave
 - > Lack of m. EVERYTHING LEADS TO EXTREME COSTS
 - > Work force
 - > Contracted maintenance

Loading Characteristics

Roadway pavement	Runway pavement	
Low lateral dispersion	High lateral dispersion	
 High volume of traffic	Low volume of traffic	
Uniform low loading	Low to very high loading	
Low tire pressure	High to very high tire pressure	
 Uniform intermediate speed	High and low speed	

Other Particularities

Smoo	othness	
Comfort	Safety	
Surface	e friction	
Stone polishing	Rubber deposits	
Maintenance/Re	ehabilitation Work	
T • 4	Maior constraints	

Typical Degradations

- Loading

 Shearing
 Rutting
 Point loading

 Climate

 Aging (durability)

 Traffic

 Friction lost

Typical Degradations

Tableau 3 - Appréciation du niveau d'agression et de la qualité des caractéristiques de surface d'une chaussée

		Cisaillement	Orniérage	Poinçonnement	Durabilité	Adhérence
Aire de stat	ionnement	++	+++	+++	++	++
	Partie courante	+	+	+	++	+++
Piste	Raquette	+++	++	+	+++	++
	Sortie de piste	+++	+	+	++	+++
	Seuil de piste (*)	+++	+	++	+++	+++
Voies de	Partie courante	+	++	+	++	++
circulation	Raccordement	++	++	++	+++	++
Plate-forme ou	u aire d'attente	+	+++	+++	++	++

(*) Zone de toucher des roues incluse

+: Niveau faible ++: Niveau moyen +++:Niveau élevé

enropes nyarocoroones er enroros superficiels pour chaussées aéronautiques Enrobés hydrocarbonés et enduits

dgac STAC

Guide d'application des normes

Typical Degradations

Paveme	nt/Mode	Shearing	Rutting	Puncturing	Durability	Friction
Ap	rons	++	+++	+++	++	++
	Main	+	+	+	++	+++
	Turning zone	+++	++	+	+++	++
Runway	Exit	+++	+	+	++	+++
	Threshold & Touchdown	+++	+	++	+++	+++
т '	Main	+	++	+	++	++
Taxiway	Intersections	++	++	++	+++	++
Holdin	ig areas	+	+++	+++	++	++

Maintenance Techniques

Ouvrage	/ Section d'ouvrage	NS 1	NS 2	NS 3	NS 4
Aire	de trafic	EB-BBA 2, ESU, ECF, EP, EB-BBM 1	EB-BBA 3, EB-BBM 2 EB-BBME 1, EP	(***) EP ⁽¹⁾	(***) EP ⁽¹⁾
	Partie courante		EB-BBA 1, EB-BBM A2, BBTM	EB-BBA 2	EB-BBA 2
	Raquette	EB-BBA 1, EB-BBM A1,	EB-BBA 2, EB-BBME 1	EB-BBME 2 (2)	EB-BBME 3 (2)
Piste (*)	Sortie/Entrée de piste	EB-BBM B1, BBTM	EB-BBA 2, EB-BBM A2	EB-BBA 3 EB-BBME 2	EB-BBA 3
	Seuil (**)		EB-BBA 2, EB-BBM A2	EB-BBA 3 (2)	EB-BBA 3 (2)
Voies de	Partie courante	EB-BBA 1, ECF,	EB-BBA 2, EB-BBM B3, BBTM	EB-BBA 2, EB-BBME 1	EB-BBA 3, EB-BBME 2
circulation	Raccordement	EB-ВВМ В2, BBTM	EB-BBA 2, EB-BBM B3	EB-BBA 3, EB-BBME 2	EB-BBA 3, EB-BBME 2
Plate-fo d'a	rme ou aire attente	EB-BBA 1, ECF, EB-BBM B2,	EB-BBA 3, EB-BBM B3	EB-BBME 3	EB-BBME 3

(*) L'utilisation de l'EB10-BBA C est à proscrire (rugosité géométrique assez faible). (**) Sur les bases militaires, les avions de chasse peuvent provoquer des dégradations sur les chaussées en enrobés (brûlures superficielles/déversement d'hydrocarbure) : une chaussée en béton de ciment est préconisée.

(***) Sur les aires de trafic où les risques de poinconnement sont importants, la réalisation d'une chaussée en béton de ciment est fortement recommandée.

(1) Son emploi est lié au support (couche de base) qui doit présenter un haut module de rigidité (par exemple structure semi-rigide ou bitu-mineuse). En généralement, le support est composé soit d'une grave hydraulique, soit d'un enrobé à module élevé ou d'une grave bitume. (2) Pour une meilleure résistance aux contraintes de cisaillement, il est préconisé un liant modifié.

Existing Maintenance Techniques

TABLE 3 PAVEMENT PRESERVATION TREATMENTS FOR ASPHALT CONCRETE PAVEMENTS

			S	urvey	Result, 9	6	
			Usage		Pe	rformar	nce
Treatment Type		Routine	Have Tried	Total	Very Good	Good	Poor
Caral and in with	hot-poured sealant	84	11	95	19	71	10
Crack seating with	cold-applied sealant	9	7	16	17	66	17
	hot mix	52	16	68	42	58	0
Small area (pothole)	cold mix	43	18	61	13	50	37
putering using	proprietary mix	9	11	20	25	50	25
Spray patching (inclue	des manual chip seal)	5	7	11	0	100	0
Machine patching with	h AC	27	14	41	39	55	6
Milling and machine p	batching with AC	34	18	52	39	61	0
Testedard	fine milling	7	5	11	20	80	0
Texturization using	controlled shot blasting	0	16	16	0	71	29
Rejuvenators, fog seal	s, etc.	30	23	52	23	59	18
Surface treatment		15	18	43	6	81	13
Slurry seal		23	25	48	10	75	15
Microsurfacing		2	9	11	25	75	0
Hot-mix overlay		45	23	68	48	48	4
Milling and hot-mix o	verlay	45	18	64	58	42	0
Hot in-place recycling		5	2	7	N/A	N/A	N/A
Cold in-place recyclin	g	2	0	2	N/A	N/A	N/A
Whitetopping (PCC or	verlay)	7	7	14	60	20	20

Notes: Treatments traditionally considered preventive maintenance treatments are in italics N/A: sample size is too small.

Slurry Surfacing

- Micro-surfacing
- Slurry seals
- Design factor
 - > Quick wear

Surface Seals

- Fog seals
- Rejuvenating seals
- Design factor
 - Friction lost

.......

Surface Treatment (Seal Coating)

- Chip sealing
 - Multiple systems
- Graded-aggregate sealing
 - Design factor
 - > Aggregate wipe-off

Types of Surface Treatments

Customs	Aggregate			
Systems	Chip Seals	Graded-Agg. Seals		
Single layer	Single	Single		
Multiple layer	Racked-in	Double		
	Double			
	Sandwich			
	Cape seal			
	Triple			
	Sandwich /double			
	Inverted (double)			
Options	Fibre-reinford	ced (FiberMat)		
	Pavement fabri	ic reinforcement		
	Flush, scrub	and fog seals		

Hot In-place Recycling

- Surface recycling
- Remixing
- Repaving

Site Report: Duxford Airfield resurfacing

Recycling with Repave resurfaces runway in budget

Hot Mix Overlay

- Resurfacing
- Milling and overlay

Potential Maintenance Techniques

- SAMI Systems
- High modulus asphalt concrete
 - > EME & BBME
- Fog/flush seals
 - Rejuvenators
- Fuel resistant techniques
 - Slurry surfacing
 - > Asphalt concrete
 - > Resin based surface treatments
- Dust control systems

Engineering Challenge

SAMI Systems

- Fibre-related systems
 - Slurry surfacing
 - > Chip seals
- Fibreglass meshing
- Sand asphalt

Fibre-Modified System

Sand Asphalt Interlayer

Fibreglass Meshing

Fuel Resistant Techniques

Asphalt concrete

 Low porosity mixture
 Modified binder

 Surface coating system

 Resin-based
 →Emulsion spray seal
 →Slurry surfacing

BBSG 0/10 au bitume pur

COLNAK 0/10

Dust Control System

- Water absorbing
 - > ...chloride
- Petroleum-based
 - Organic non-petroleum
 - Lignin derivatives
 - Tall-oil derivatives
 - Vegetable oils
- Others
 - Electrochemical
 - Synthetic polymer
 - Clay additives

