Asphalt Repair and Maintenance Techniques Airfields

Alexander (Sandy) Brown, P.Eng.

Canadian Regional Engineer – Asphalt Institute
Technical Director – OHMPA

Repair and Maintenance Techniques HMA Airfield Pavements

<mark>asphalt</mark> institute

- Serviceability/Performance
- Local repairs
- Global Maintenance Alternatives
- Rehabilitation Strategies
- Short introduction
 - More detailed instruction at the 3 day FAA sponsored Airport Pavement Workshop taught by the Asphalt Institute
 - Nov 5 to 7 in Baltimore

Serviceability

<mark>asphalt</mark> institute

- Ability of a pavement section to provide the intended service at a given point in time
- Method for quantifying the condition of a pavement section

Serviceability/Performance

Pavement Condition

Pavement Condition

Pavement Life Cycle

Pavement Life Cycle Theory

FAA Critical PCI

asphalt institute

GAO Report No. 98-226 Airfield Pavement Critical PCI Values

- Critical PCI for primary airports is 65
- Critical PCI for small airports is 55

Asphalt Airfield Pavement Performance

FAA - July 1999

Pavement Condition Index (PCI)

asphalt institute

 Condition Survey - visual assessment of the pavement surface

- Survey quantifies the type, severity and extent of pavement distress
- Deduct valves for the distress provides a Pavement Condition Index (PCI)

Repair and Maintenance Techniques HMA Airfield Pavements asphalt institute

- Serviceability/Performance
- Local repairs
- Global Maintenance Alternatives
- Rehabilitation Strategies

Pavement Repairs

- Reactive activities that keep pavement in adequate functional condition
- Localized does not affect entire surface
 - Crack filling /sealing
 - Potholes
 - Filling
 - Patching
- Global normally to improve drainage, surface friction or ride quality

Crack Repairs

- Filling
 - Minimal preparation
 - Short-term life
 - Does not keep water out
- Sealing
 - Careful preparation
 - Long-term
 - Keeps water out

Crack Repair Guidelines

Crack Width < 1/8 inch (3 mm), non-working	Treatment Options • Do nothing • Fog seal • Surface treatment
1/8 – 3/4 inch (3 – 19 mm)	Crack Fill (short life, prep for resurfacing)Crack Seal (> 5 yr life)
> 3 /4 inch (19 mm)	 Filling (sand or sand-emulsion slurry) Patching (cut and replace material)

Crack Filling

<mark>asphalt</mark> institute

- Pavements that will be resurfaced within 3 years
- Non-working cracks
- Cracks wider than ¾ inch
 - Often caused by cracking in underlying materials

Crack Filling – Steps

- Distress/crack survey
- Remove loose material from crack
 - Vegetation should be treated in advance using a strong herbicide (e.g., Round-Up, Finale)
 - Use compressed (preferably heated) air to clean and dry the crack
- Pour/apply sealant, preferably in flush-fill or over band configuration

Crack Preparation

- Cracks Must Be Clean & Dry
- Use Compressed Air

F.O.D. Containment

Crack Filling Techniques

asphalt institute

Flush-Fill

Over Band

Don't do this!

Proper Crack Filling Technique

Crack Filling Materials

- Asphalt emulsions (CRS-2,-2h,-2P HFRS-2, -2P)
- Asphalt cements (PG 64-22, 67-22, etc)
- Fiber, mineral filled asphalts (proprietary)
- Sand-emulsion slurry
 - Particularly for wide cracks (>3/4 inch)
- Rubberized asphalt (ASTM D 3405)

Crack Sealing – Steps

- Distress/crack survey
- Routing (establishing sealant reservoir dimensions)
- Blowing
- Apply sealant

Routing

- Cut the pavement to a prescribed width and depth
- Improves sealant performance
 - Better adhesion
 - Reduced tensile stress on material

Hot Air Lance

asphalt institute

- Up to 3000°F
- > 2000 ft/sec blast velocity
- Propane burner heats air
 - no flame

Comments:

- For wet conditions, lance can improve performance
- Otherwise, compressed air may be more effective (Québec study)

Crack Sealing

asphalt institute

Typical Dimensions:

W = 12 mm to 19 mm

D = 12 mm to 19 mm

Crack Sealing Materials

- Rubberized asphalt
 - ASTM D1190
 - ASTM D3405
 - Manufacturers' recommendations for specific climate conditions
- Cold-applied sealants

Finished Product

Crack Repairs

asphalt institute

When do you choose to fill or seal the cracks?

- Crack Filling
 - Pavement to be resurfaced within 3 years
 - Or in preparation for resurfacing
 - Extremely wide cracks (actually patching)
- Crack Sealing
 - No intent to resurface in > 5 years
 - Sawcutting over existing PCC joints

Pavement Repairs – Patching

- Reactive activities that keep pavement in adequate functional condition
- Localized-do not affect entire surface
 - Crack filling/sealing
 - Potholes
 - Filling
 - Patching
- Global-normally to improve drainage, surface friction or ride quality

Patching vs. Filling Potholes

- <u>Filling</u> uses minimal preparation, can be viewed as "survival" treatments to maintain a safe riding surface
 - Often uses cold mix
 - When using cold mix, allow at least 6 months to cure before placing overlay or seal coat
- <u>Patching</u> is localized reconstruction that requires careful preparation
 - Normally use HMA in preparation for resurfacing or for "permanent" repairs

Full Depth Patching

- Removal of materials in failed area
 - Old pavement
 - Aggregate base
 - Subgrade
 - Remove materials down to firm support
 - Removal should extend 0.3 m (1 ft) beyond distressed area in all directions

Full Depth Patching

- Removal of materials (cont.)
 - Cut pavement with saw or hammer
 - Outline of area should be rectangular
 - Two faces perpendicular to traffic
 - Faces of excavation should be vertical, straight and solid
- Adequate drainage considerations
 - Wet base/subgrade corrections

Vertical, Straight and Solid Faces

Repair and Maintenance Techniques HMA Airfield Pavements asphalt institute

- Serviceability/Performance
- Local repairs
- Global Maintenance Alternatives
- Rehabilitation Strategies

Global Maintenance Alternatives

- Thin HMA Overlay
- Surface Recycling (Hot-in place)
 - Microsurfacing
 - Cape Seal
 - Slurry Seal
 - Rejuvenator/Sealer
 - Fog Seal

- Usually not considered as atructural
- Recent research at the FHWA ALF site
 - Rutting of thin lifts (new and aged)
 - Ability to resist reflective cracking (new and aged)
- Studied previously non-loaded and loaded sections
- Applied a 25 mm inlay of Superpave 4.75 mm mix
- ALF simulates hwy tire wander on a 425 super single and applies a 71 kN (15.9 ton) load with a tire inflation pressure of 827 kPa (119.9 psi)

asphalt institute

Conclusions

- "Thin overlay allows 8-year-old-PLUS structure to perform like a 3-year-old structure
 - 425,000 passes to first crack new structure
 - 500,000 passes to first crack for overlay
- Un-aged overlay had more binder volume with better cracking resistant properties
- Without milling-and-overlay the structure performed significantly poorer
 - 50,000 passes to first crack"

Coal Tar-Based Products

- Resistant to damage from fuels and lubricants
- Best applied where there is routine exposure to fuels or lubricants
 - Aprons, refueling areas
- Different coefficient of thermal expansion than asphalt
 - Results in shrinkage cracks in the seal
- Environmental Concerns

Asphalt Rejuvenators

asphalt institute

- Soften asphalt binder
- Reduce raveling
- Close and delay surface cracks

Performance

3-5 Years

Best on shoulders or lightly trafficked GA airports

4 Basic Steps for Hot In Place

- Soften pavement with heat
- Scarification or mechanical removal of softened material
- Mixing with recycling agent, new aggregate, new binder, or new mix
- Laydown and paving

Surface Recycling

<mark>asphalt</mark> institute

- Rehabilitation process that restores cracked,
 brittle, and irregular pavement in preparation for a final thin wearing course
- Depth of 25 mm (1 inch) most common, 40 mm
 (1 1/2 inches possible)

Surface Recycling

- Radiant or infrared heating
 - New technology uses super-heated air and recirculating plenums
- Propane most common fuel
- Spring loaded scarifiers
 - New technology uses a small milling head to cut to exact depth

Heating with Hot Air

Single Pass Remixing Equipment

HMA Compaction-Lift/Layer Thickness

- Lift thickness
 - At least 3x nominal maximum aggregate size (NMAS)
- Multiple lifts help achieve:
 - Smoothness
 - Grade control
- Thicker lifts
 - Conserve heat longer
 - Provide more time for compaction
 - Easier for aggregate to "seat" under rollers

Compaction

- Essential to good performance!
- Need to compact to desirable air voids level
 - conventional dense-grade mixtures: 4-8%
 - gap-grade mixtures: 3-6%
- Compaction can only achieved if:
 - mixture is confined
 - mixture is hot (workable)

Repair and Maintenance Techniques HMA Airfield Pavements

- Serviceability/Performance
- Local repairs
- Global Maintenance Alternatives
- Rehabilitation Strategies

Rehabilitation With Asphalt Overlays

- Asphalt Pavement
 - Overlay
 - Mill & Inlay
 - Mill & Overlay

Structural HMA Overlays

- Often include partial removal of existing pavement
 - Cold milling
 - Generates Reclaimed Asphalt Pavement (RAP)
- Investigate cause of distress before to decide
 - Depth of milling
 - Selection of mixture components
 - Type of Mixture

Cold Milling

- Mill below depth of distress
 - Rutting
 - Surface-initiated cracking
- Avoid milling to within ½ inch of interface
 - Granular base
 - Intermediate lift
 - Existing PCC
- Consider properties of existing HMA before milling
 - Increase the value of RAP obtained
 - Separate sealers from RAP

Surface After Milling

Surface Preparation for HMA Overlays

Tack Coat Application

- Surface & vertical faces of abutting pavement
- Light, uniform application
 - Cut 50% with water
 - 0.04-0.07 gal/sy, residual
- Typical materials:
 - SS-1h, CSS-1h
 - Special Tack emulsions
 - Proprietary

Fabric Interlayers

- Useful in sealing underlying pavement
- Can effectively delay reflection cracking provided:
 - Minimal lateral movement at joints or cracks
 - No vertical movement under loading
 - Excellent load transfer at PCC joints
 - No voids or evidence of pumping
- MUST BE INSTALLED PROPERLY!!!

Fabric Interlayers

When Installing Geotextile

- Fill cracks more than ¼ inch wide
 - Prefer recessed fill in advance
- Patch areas with alligator cracking
- If milling, place thin leveling course (1.5-2 in) using small-aggregate mixture
- Install fabric over compacted leveling course
- Place min 2 inches HMA
 - To adequately cover
- May eliminate recycling in the future

"Tack" for Geotextile

- Misnomer-should be called a membrane
- Essential for performance
 - 0.2-0.3 gal/sy of PG 58 or PG 64 asphalt binder
 - IMMEDIATELY behind distributor
 - Otherwise fabric becomes a bond breaker
 - Do not use emulsions or cutback!

Geotextile Application

- Easier to install
 - Isolated
 - Global
- Best on leveling course
 - Not bridging void
 - Reference joint/crack
- At least 2 in. HMA cover

- Interlayer Stress Absorbing Composite
 - ISAC®

Airplanes Love Asphalt!

