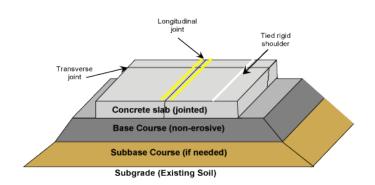
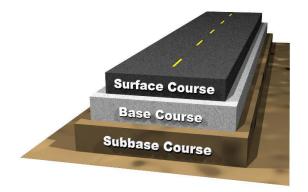


AIRFIELD PAVEMENT BASE AND SUBBASE CONSIDERATIONS

Ludomir Uzarowski, Ph.D., P.Eng., Golder Associates Ltd. Rabiah Rizvi, B.A Sc. Golder Associates Ltd.

PRESENTATION OUTLINE


- Introduction
- Pavement structural design
- Material requirements
- Construction considerations



INTRODUCTION

- Airfield Pavement
 Structures
 - Hot Mix Asphalt or Portland Cement Concrete Layer
 - Base Layer
 - Subbase Layer
 - Subgrade

INTRODUCTION

- Base Layer
 - Bound granular material
 - Unbound granular material

Subbase Layer

Unbound granular material

- Contribution to overall structural capacity of pavement
- Provide a construction platform for subsequent layers
- Grade and elevation adjustment
- Drainage
- Protection against frost damage

Design considerations

- Anticipated aircraft traffic loading
- Soil conditions
- Load bearing capacity
- Frost protection

PAVEMENT DESIGN

Design methods

- Transport Canada
- Federal Aviation Administration
- International Civil Aviation Organization
- Design includes
 - Selection of materials for each layer
 - Design of required thickness of each layer

MANUAL OF PAVEMENT STRUCTURAL DESIGN

> ASG-19 (AK-68-12)

MANUEL SUR LA CONCEPTION DES CHAUSSÉES

- ASG-19 Manual of Pavement Structural Design
- All materials converted to equivalent granular thicknesses
- Granular layers to provide sufficient thickness of
 - Non-frost susceptible materials
 - Engineered materials to provide adequate load bearing capacity
 - Good drainage characteristics

- Minimum granular base thickness specified for tire pressure of critical aircrafts
- Subbase thickness to account for remaining required total pavement structure thickness

Pavement Material	Granular Equivalency Factor
Selected granular sub-base	1
Crushed gravel or stone base	1
Waterbound macadam base	1 1/2
Bituminous stabilized base	1 1/2
Cement stabilized base	2
Asphaltic concrete (good condition)	2
Asphaltic concrete (poor condition)	1 1/2
Portland cement concrete (good condition)	3
Portland cement concrete (fair condition)	2 1/2
Portland cement concrete (poor condition)	2

	DESIGN AIRCRAFT TIRE PRESSURE			
Component Layer	Less than 0.5 MPa	0.5 MPa to 0.75 MPa	0.75 MPa to 1.0 MPa	Greater than 1.0 MPa
Asphalt Concrete Surface Course (Hot-Mixed)	5.0 cm	6.5 cm	8.0 cm	10.0 cm
Crushed Gravel or Crushed Stone Base Course	15 cm	23 cm	25 cm	30 cm
Selected Granular	As required in addition to the asphalt and base layers to provide:			
Sub-base Course	 (a) the total pavement equivalent granular thickness required for structural support. 			
	(b) the total pavement depth required for frost protection.			
NOTES:				
At grant-in-aid/small airpo	rts and other	special location	is, the pavement r	equired for tire

At grant-in-aid/small airports and other special locations, the pavement required for tire pressures below 0.4 MPa may be designed as a cold-mixed asphalt surfacing. The figures given for hot mix are also the minimum thickness requirements for a cold mix.

In areas of rock cut, the minimum pavement thickness shall be 15 cm of granular base course plus the pavement surface thickness as specified above.

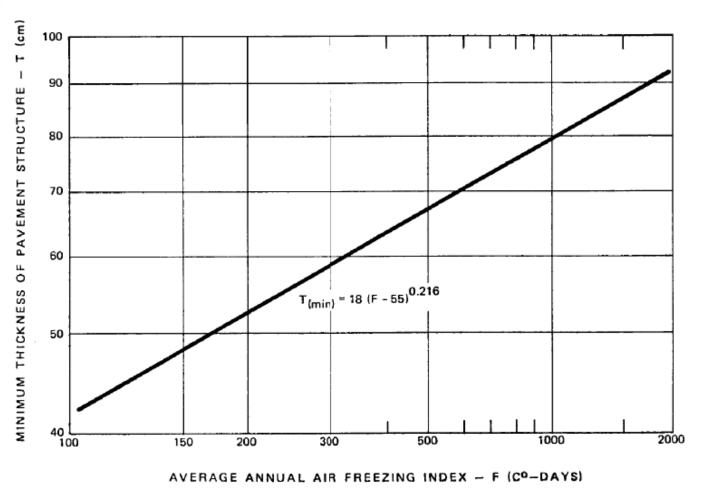


FIGURE 3.4.1 FLEXIBLE AIRFIELD PAVEMENT STRUCTURAL THICKNESS REQUIREMENTS

October 1, 2014

MINIMUM PAVEMENT THICKNESS FOR FROST PROTECTION FIGURE 3.3.1

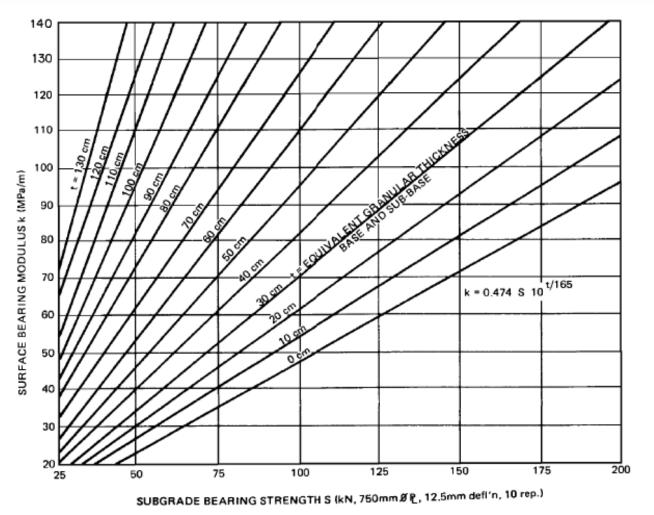
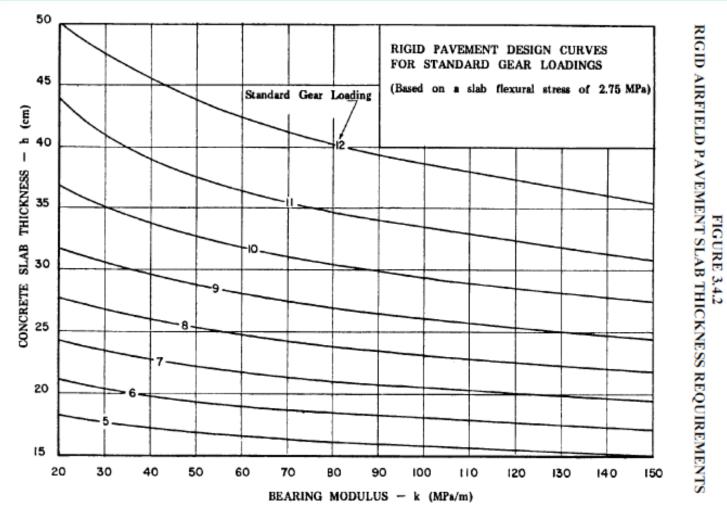
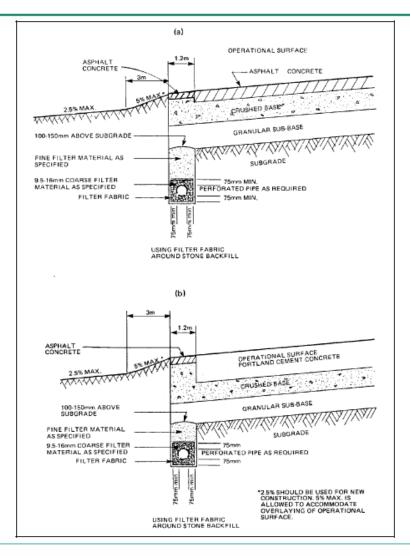



FIGURE 3.2.3 - RIGID PAVEMENT BEARING MODULUS



Golder

FAARFIELD software

 Purpose of base and subbase is to distribute load over wider area on subgrade surface

FEDERAL AVIATION ADMINISTRATION

- Base and subbase materials are characterized by their modulus
 - Automatically calculated using procedure developed by US Army Corps Waterways Experiment Station
 - Depends on modulus and thickness of underlying layer
- Minimum base course thickness depending on aircraft load and type

FEDERAL AVIATION ADMINISTRATION

TABLE 3-9. MINIMUM AGGREGATE BASE COURSE THICKNESS

Gear Type	Design Load Range		Minimum Base Course (P-209) Thickness	
	lbs	(kg)	in.	(mm)
S	30,000 - 50,000	(13 600 - 22 700)	4	(100)
	50,000 - 75,000	(22 700 - 34 000)	6	(150)
D	50,000 - 100,000	(22 700 - 45 400)	6	(150)
	100,000 - 200,000*	(45 400 - 90 700)	8	(200)
2D	100,000 - 250,000*	(45 400 - 113 400)	6	(150)
	250,000 - 400,000*	(113 400 - 181 000)	8	(200)
2D (B757, B767)	200,000 - 400,000*	(90 700 - 181 000)	6	(150)
2D or 2D/D1 (DC10, L1011)	400,000 - 600,000*	(181 000 - 272 000)	8	(150)
2D/2D2 (B747)	400,000 - 600,000*	(181 000 - 272 000)	6	(150)
	600,000 - 850,000*	(272 000 - 385 600)	8	(200)
2D/D1 or 2D/2D1(A340)	568,000 - 840,400	(257 640 - 381 200)	10	(250)
2S (C130)	75,000 - 125,000	(34 000 - 56 700)	4	(100)
	125,000 - 175,000*	(56 700 - 79 400)	6	(150)
3D (B777)	537,000 - 777,000*	(243 500 - 352 440)	10	(250)
3D (A380)	1,239,000 - 1,305,125*	(562 000 - 592 000)	9	(230)

*Values are listed for reference. However, when the traffic mixture contains airplanes exceeding 100,000 lbs. (45 400 kg) gross weight, a stabilized base is required.

MATERIAL SPECIFICATIONS

- Engineered materials required to have specific properties
- Specification for material needs to ensure that material placed meets design assumption
- Material specifications include
 - Physical property requirements for aggregates
 - Abrasion resistance
 - Proportion of crushed faces
 - Resistance to chemical damage
 - Proportion of lightweight particles
 - Particle shape
 - Gradation requirement for aggregates

TRANSPORT CANADA SPECIFICATION

ASG – 06 Pavement Materials Construction and Testing

Property	ASTM Test Method	Sub-base (2)	Base (3)	Base Levelling Material (4)	Cement Stabilized Base
Gradation (sieve/% passing)					
75 mm	C136	100			
50 mm	C136		100		
37.5 mm	C136		75-100		100
25 mm	C136			100	
19.0 mm	C136		50-75	75-100	75-100
9.5 mm	C136		40-65	50-75	
4.75 mm	C136		30-50	30-50	35-65
2.00 mm	C136				20-50
0.425 mm	C136	0-30	10-30	10-30	
0.300 mm	C136				10-30
0.150 mm	C136				0-10
0.075 mm	C117	0-8	3-8	3-8 (5)	
Crushed Content (%) min.					
50 to 37.5 mm			60		
37.5 to 19.0 mm			60	60	
19.0 to 4.75 mm			60	60	
Liquid Limit (%) max.	D4318	25	25	25	25
Plasticity Index (%) max.	D4318	6	6	6	6
Abrasion Loss (%) max.	C131	50	45	45	50
Soundness loss (%) max. Coarse aggregate (>4.75 mm) Fine aggregate (<4.75 mm)	C88 (6)				12 16
Flat or Elongated Particles (%) max. (7)	D4791	15	15	15	15

Sieve Size	Design Range Percentage by Weight
2 inch (50 mm)	100
1-1/2 inch (38 mm)	95-100
1 inch (25 mm)	70-95
3/4 inch (19 mm)	55-85
No. 4 (4.75 mm)	30-60
No. 40 (0.45 mm)	10-30
No. 200 (0.075 mm)	0-8

- Physical Property Requirements
 - LA Abrasion $\leq 45\%$
 - MgSO₄ Soundness \leq 18%
 - Flat and Elongated $\leq 15\%$
 - 2-faces Crushed > 90%
 - 1-face Crushed = 100%

Sieve Size	Percentage by Weight Passing Sieves		
	Gradation A	Gradation B	
2 inch	100 1	100 ¹	
(50 mm)	100	100	
No. 4	45 - 100	55 100	
(4.75 mm)	43 - 100	55 - 100	
No. 10	37 - 80	45 - 100	
(1.80 mm)	37 - 80		
No. 40	15 - 50	25 - 80	
(450 µm)	15 - 50	23 - 80	
No. 80	0.25	10 25	
(210 µm)	0 - 25	10 - 35	

- Aggregate Properties
 - LA Abrasion $\leq 40\%$
 - MgSO₄ Soundness \leq 15%
 - Liquid limit ≤ 25
 - Plastic limit ≤ 6
- Mix Properties
 - 7-day Compressive Strength
 - 3 MPa minimum
 - 5.5 MPa maximum
 - 28-day Compressive Strength
 - 7 MPa maximum

Sieve Size	Percentage by weight passing sieves
3 inch (75 mm)	100
No. 10 (2.0 mm)	20-100
No. 40 (0.450 mm)	5-60
No. 200 (0.075 mm)	0-8

- Material requirements
 - Hard durable particles
 - Free of clay lumps
 - Free of vegetative matter
 - Free of deleterious material
 - Liquid limit $\leq 25\%$
 - Plastic limit $\leq 6\%$
- Pit run material is acceptable

CBR requirement

- Base course minimum 80
- Subbase minimum 20

Equivalency factors for subbase course

- P-208 Aggregate Base Course 1.0 1.5
- P-209 Crushed Aggregate Base Course 1.2 1.8
- Equivalency factors for stabilized subbase
 - P-301 Soil Cement Base Course 1.0 1.5
 - P-304 Cement Treated Base Course 1.6 2.3

- P-209, Crushed Aggregate Base Course
- Equivalency factors for base course
 - P-208 Aggregate Base Course 1.0
- Equivalency factors for stabilized base
 - P-304 Cement Treated Base Course 1.2 1.6

- Customized base and subbase specifications
 - Locally available materials
 - Tighter requirements for heavier aircrafts
 - Additional requirements
 - Enhanced drainage (drainage blankets)

- Construction methods should produce a final product that meets the design assumptions
- Approved methods of construction included in specifications
- Quality Control (QC) and Quality Assurance (QA)

Compaction requirements

Minimum Compaction (%)

Subbase – unbound98

Base - unbound 100- bound 98

QC testing

Minimum Testing Frequency

- Base placing
 - Moisture-density relationship
 - Gradation and crushed content
- Base stockpiling
 - Gradation and crushed content
 - Atterberg limits
- Subbase placing
 - Moisture-density relationship
 - Gradation
 - Atterberg limits

- 2 per material type
- 2 per day
- 2 per day
 - 1 per week
- 2 per material type
- 1 per day
- 1 per week

- Minimum field density testing
- Subbase 1 per 3,000 m2/lift
 Base 1 per 3,000 m2/lift

Granular materials and aggregate production

High permeability granular base

- Base and subbase layers significantly impact pavement long term performance
 - Structural contribution
 - Drainage
 - Frost protection
- Do it right the first time
 - Addressing base and subbase deficiencies is difficult and expensive

MANN THANK YOU

Laborat

QUESTIONS ?

luzarowski@golder.com rrizvi@golder.com