

"Do's" & "Don'ts" in Airfield Concrete Pavement Design and Construction

Myron Thiessen, P. Eng. 16 September 2014

DON'Ts

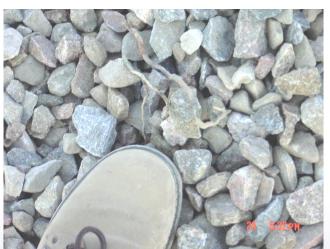
Lessons learned from past projects

Use of Poor Quality Aggregates

- Poor aggregate quality → material related distress
- QA/QC testing is key

Alkali Silica Reactivity (ASR)

Popouts


Durability cracking

Lack of QA/QC in Aggregate Production/Stockpile Management

- Stockpile management
 - Segregation
 - Contamination → paved stockpile site
- Aggregate production
 - Quarry/pit materials change over time

Inadequate Consolidation

- Lightweight finishing equipment
- Defective vibrators
- Poor mix design

Poor Finishing Techniques

• Excessive hand finishing

Poor Finishing Techniques

- Adding water to the surface to aid finishing
- Adding concrete to the surface to correct edge slump or surface deficiencies

Lack of Protection

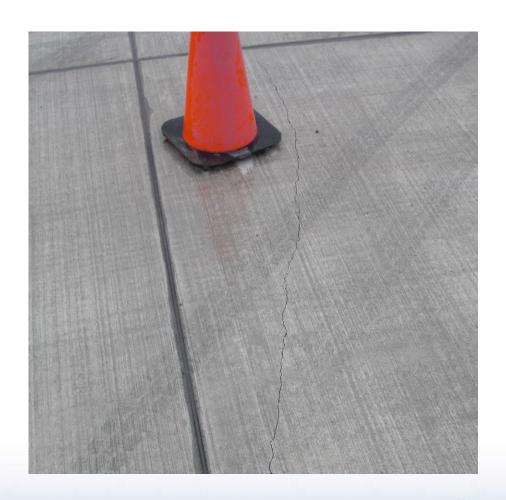
Weather factors

- Wind → protective screens
- Hot weather → night paving
- Cold weather → insulated blankets
- Rain → plastic sheeting

Incorrect Joint Design - Keyways

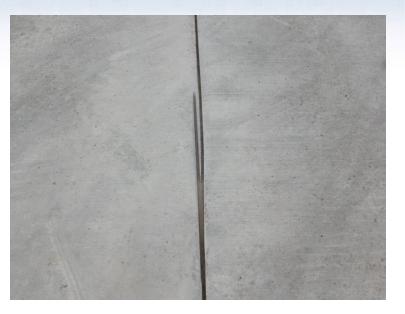
- DND standard until about 2004
- Difficult to construct → poor consolidation

Keyway/joint failure



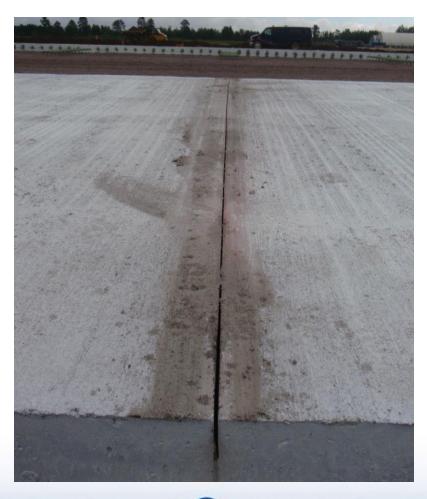
Late Sawcutting

Leads to uncontrolled cracking



Poor Joint Construction

- Lack of survey control
- Carelessness



Inadequate Clean-Up

Sawcut slurry must be removed

Construction Related Damage

- Construction traffic → min. 70% strength
- Risks associated with slab removal

Be cautious and protect adjacent edges!

Mix Design Issues

- Rapid or slow strength gain
- Shrinkage cracking
- Edge slump
- Finishing difficulties → tearing/voids in the surface

DOS

Measures that promote quality.

Insist on a QC Plan

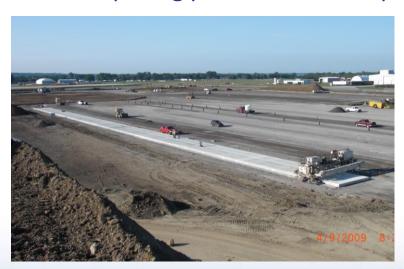
QC Plan

 Provides assurance the contractor intends to produce high quality concrete

Providers an opportunity to address potential

deficiencies before paving

Proofrolling


- Standard Transport Canada airfield proofroller
 - 41,000 kg; 4 tires at 0.6 MPa
 - Aids compaction and helps locate soft spots

Mandatory Trial Batch, Trial Lane, and Pre-Pave Meeting

- Trial Batch
 - Check mix proportions & plant performance
- Trial Paving Lane
 - Check Contractor's ability to meet spec requirements → sets job standard
- Pre-Pave Meeting
 - Discuss paving plan and address potential issues

Use an On-Site Batch Plant

- Mandatory for large paving projects
 - Key to good consistency in mix workability and delivery
 - Eliminates need for concrete mixer trucks

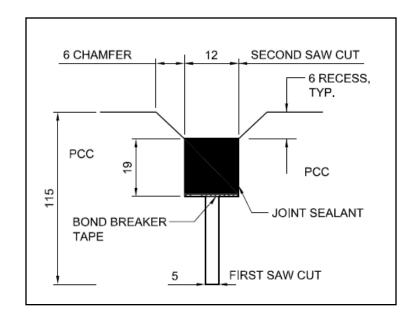
Slip-Form vs. Fixed-Form Paving

• Slip-Form

- Use wherever practical
- Better consolidation
- Less hand-finishing → greater surface durability

• Fixed-Form

— Use only for small jobs, irregular panels



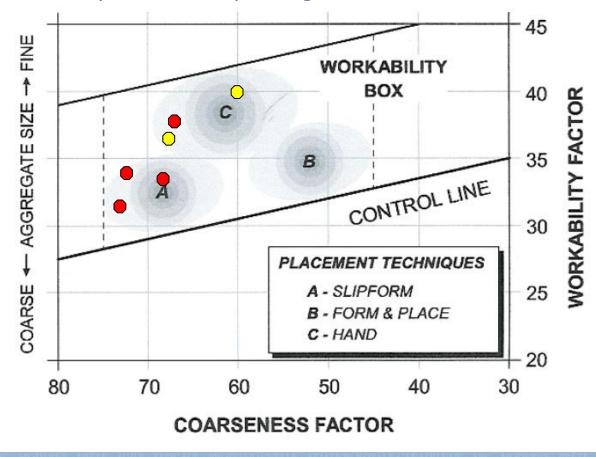
Joint Design

- Use chamfered joints
- Eliminate the backer rod

Mix Design

- Use petrographic testing to help determine aggregate quality
 - Petrographic Number \rightarrow 125 max.
- Transfer greater responsibility to the Contractor
 - Aggregate size → max. 40 or 28 mm
 - Slump \rightarrow don't specify

Let the contractor decide



Aggregate Proportioning

- Use combined gradations to check workability
 - Coarseness Factor = 100 x (% Retained above 9.5 mm sieve)
 (% Retained above 2.36 mm sieve)
 - Workability Factor = % passing 2.36 mm sieve

Pay Adjustments

- Pay adjustments for strength, thickness and smoothness
- Advantages
 - Provides a means to separate good or bad work from "average"
- Disadvantages
 - Pay adjustment procedure confusing
 - Contractors aren't "aiming" for it
 - Unable to find the right balance → don't want to reward or penalize "average" workmanship

Questions?

