

Rehabilitation of Runway 06-24 and Holding Bay 06 at Montreal-Mirabel International Airport

Presented by:

Elie El Hindy, Eng. M.Sc.A. Aéroports de Montréal

Moez Gmach, Eng. Stantec SWIFT CONFERENCE - MONTREAL September 16th, 2015

Program

- 1. Location
- 2. Current Vocation and Users
- 3. History and Characteristics
- 4. Existing Pavement Structure
- 5. Pavement Condition Index
- 6. Geotechnical Investigation and HFWD Survey
- 7. Drainage
- 8. Electrical Work
- 9. Design Options
- 10. Final Concept
- 11. Procurement Strategies
- **12. Construction Schedule**

1 Location

AAS: Aircraft Arresting Systems

2 Current Vocation and Users

Montreal-Mirabel International Airport is a world-class industrial aviation hub, making Montreal the third largest globally, with:

- 2 operational runways
- 23 all-cargo carriers
- A general aviation base
- 30 businesses established on site, totaling 3,700 direct jobs, with 96% in the aeronautics sector
- 10,000 local jobs generated by the airport

2 Current Vocation and Users

A few of the current users:

- Bombardier Aerospace (CSeries, CRJ Series)
- Pratt & Whitney Canada
- Stelia Aerospace
- Nolinor Aviation
- FedEX / DHL / Purolator / UPS
- General Aviation
- SkyLink Express
- Avianor
- L3 MAS Aerospace & Defence
- AéroMag 2000
- Hélibellule

2 Current Vocation and Users

Aircrafts using the facility:

- Antonov AN-225
- Antonov AN-124
- DC-10
- MD-11
- Bombardier CSeries
- Boeing 727-200 / 737-200 / 757-200 / 767-300
- Boeing 747 SP-B5
- Airbus A300
- CF-18 Hornet

3 History and Characteristics

•Inauguration: October 4th, 1975

•Rigid pavement structure with cement treated base course

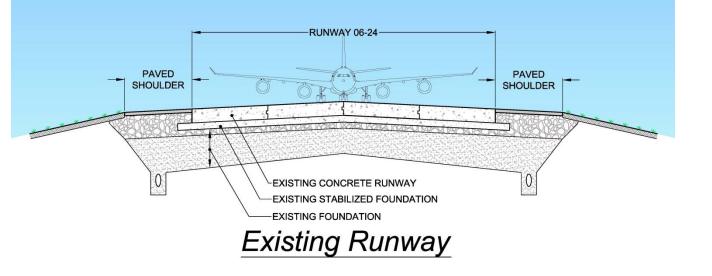
AÉROPORTS DE MMNTRÉA

antec

- o 380 mm thick slabs (15")
- o 7.5 m by 6 m (24 ft. by 20 ft.)

•RWY 06-24 Geometry

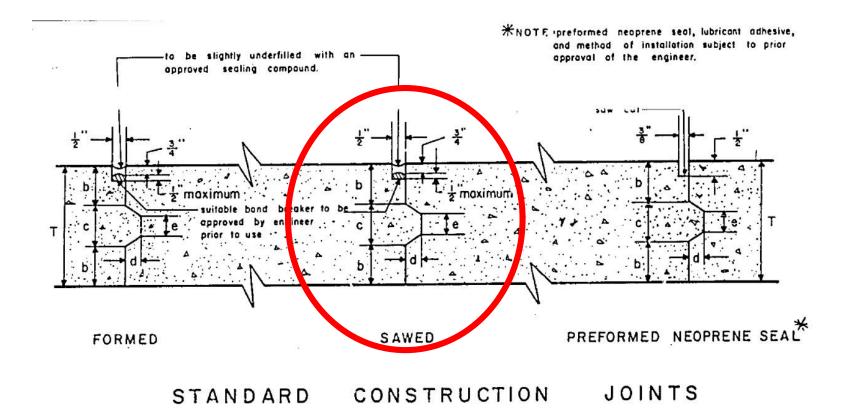
- o 61 m wide (200 ft.)
- o 3,658 m long (12,000 ft.)
- 223,138 sq.m (2,401,837 sq.ft.)

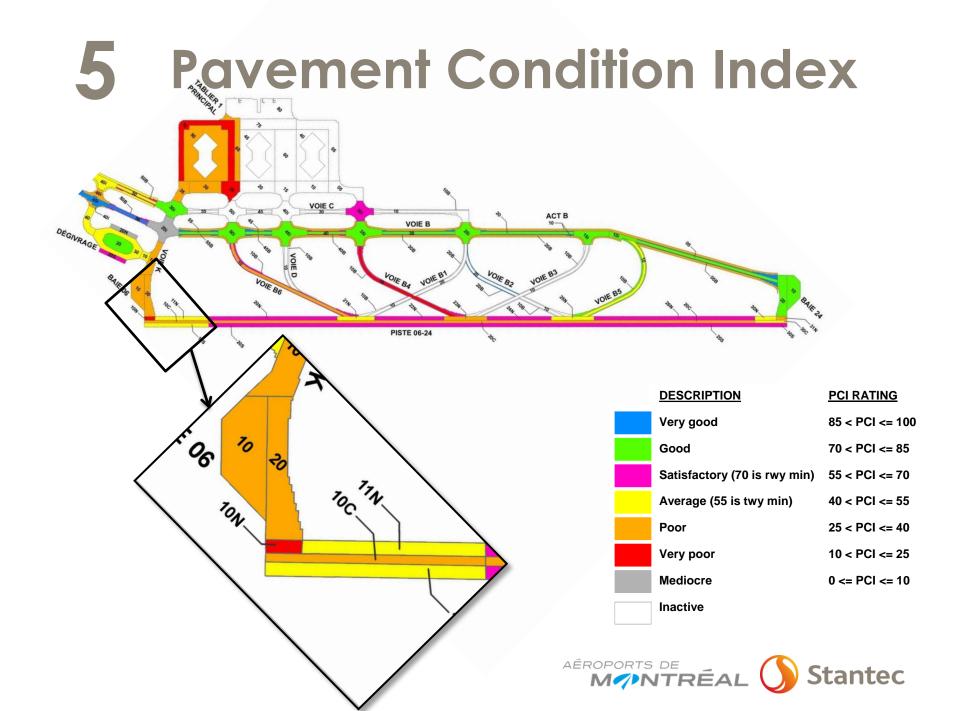

•HB 06

o 28,500 sq.m (306,771 sq.ft.)

4 Existing Pavement Structure

Rigid pavement with cement treated base course

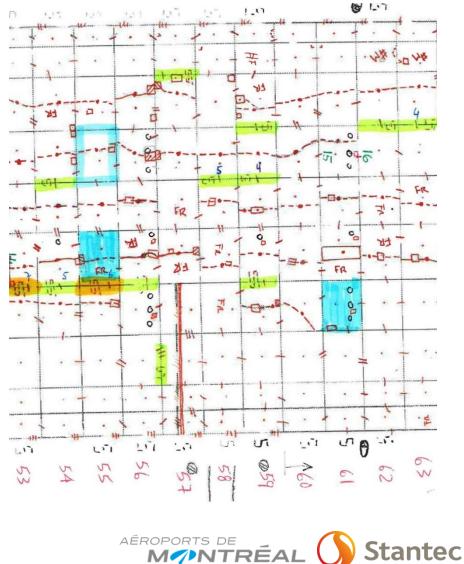

- 380 mm thick slabs (15")
- Key joints, undoweled
- 200 mm cement treated base course
- 100 mm crushed stone
- 500 mm sand or existing subgrade


AÉROPORTS DE MMNTRÉA

antec

4 Existing Pavement Structure

5 Pavement Condition Index



- Visual survey of surface conditions including:
 - o Blow up
 - o Corner break
 - Longitudinal cracking
 - Transverse cracking
 - Joint seal damage
 - Pop outs
 - o Scaling
 - o Settlement
 - Shattered slab
 - Joint spalling
 - Corner spalling
 - Electrical trenches

Joint settlement measurement

HB 06

Settlement or irregularity	Nb. measures	% measures		
< 6 mm	25	43.9%		
6 to 13 mm	31	54.4%		
> 13 mm	1	1.8%		
Total	57	100.0%		

RWY 06-24

Settlement or irregularity	Nb. measures	% measures		
< 6 mm	203	58.3%		
6 to 13 mm	142	40.8%		
> 13 mm	3	0.9%		
Total	348	100.0%		

AÉROPORTS DE MMNTRÉAL Stantec

Transversal joint opening

HB 06 Average of 16 mm

Tra	nsversal joint opening	Nb. measures	% measures	
	<= 10 mm	1	7.7%	
	11 to 13 mm	3	23.1%	
	> 13 mm	9	69.2%	
	Total	13	100.0%	

RWY 06-24 Average of 14.3 mm

Tra	ansversal joint opening	Nb. measures	% measures		
	<= 10 mm	0	0.0%		
	11 to 13 mm	83	25.7%		
	> 13 mm	240	74.3%		
	Total	323	100.0%		

Soil Recognition

Drilling and coring

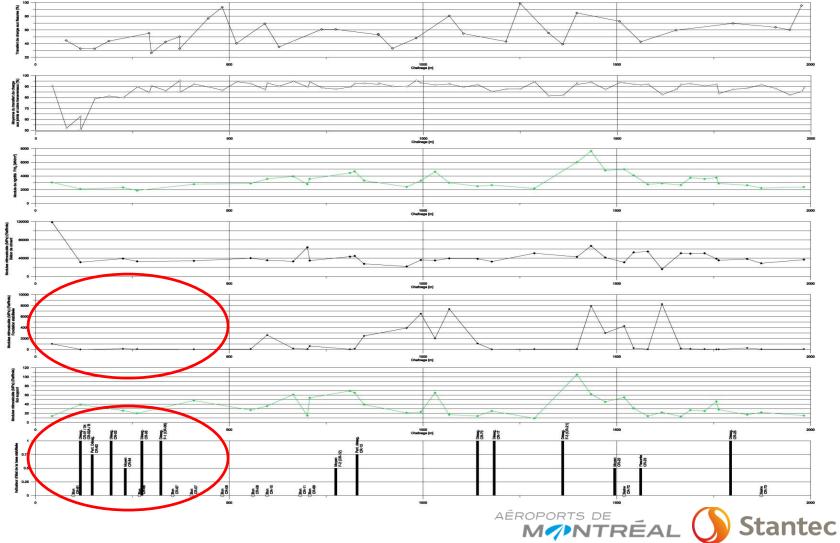
- 7 geotechnical borholes to:
 - Confirm existing structure

- Establish the actual CBR values and the resilient modulus with a portable DCP (Dynamic Cone Penetrometer)
- 66 concrete coring samples to:
 - Confirm existing slab thickness
 - Confirm cement treated base course thickness
 - Determine granular composition of the concrete

6 HFWD Survey

Total of 184 slabs tested

- Load transfer on joints
 - >75%:Good
 - o 50 to 75% : Average
 - < 50% : Poor
- HFWD modulus back calculation



6 HFWD Survey Results Load Transfer on Joints

					%load	transf	I				Average	
Row	Chainage	Longitu	ulinel.	ITree				ners		Terr	load	
		21		2	nsversa 24	31	2	ners 32	34	Fis 11	transfer	
	0.040					-					%	
1	0+043	45	24	88	96	96	90	95	79	14	91	
3	0+055	29	50	45	28	34	52	24	40	41	37	Threshold O/
7	0+079 0+079	82	26 58	74 50	83 46	65 70	72 53	67	65 59	73	71 52	Threshold 06
13	0+079	65 52	55	80	40 79	62	59	<u>35</u> 47	59 50	45	<u>5∠</u> 63	
13	0+116	55	54	64	63	49	59 54	30	43	33	51	
19	0+153	56	86	97	92	47	88	94	55	33	79	
25	0+189	82	37	89	84	97	59	70	88	44	81	
27	0+201	35	44	90	92	59	66	77	84		78	
31	0+226	44	44	88	94	83	74	48	92		80	
37	0+262	72	30	90	95	79	92	91	91		90	
42	0+293	49	35	83	94	93	70	79	89	55	85	
43	0+299	84	33	94	95	77	92	93	93	26	91	
49	0+336	40	40	93	91	89	86	67	91	43	86	
55	0+372	40	43	93	96	97	96	96	95	50	96	
55	0+372	48	47	90	87	89	84	76	83	33	85	
61 67	0+409 0+445	45 53	32	94 90	93 94	91 85	91 90	90 91	94 88	77	<u>92</u> 90	
73	0+445	35	34	88	94 91	83	87	87	83	93	90 87	
79	0+482	44	27	92	96	93	95	97	93	40	94	
81	0+531	55	44	93	94	97	91	92	93		93	Center of RWY 06-24
85	0+555	42	38	92	93	92	94	92	93		93	
91	0+592	49	54	90	84	90	86	89	84	69	87	
92	0+598	58	32	92	92	94	91	96	94		93	
97	0+628	67	88	91	90	90	89	95	87	35	90	
103	0+665	52	35	95	94	97	95	94	93		95	
541	3+337	66	73	91	92	93	91	93	94		92	
547	3+373	93	85	97	95	93	95	92	96		95	
553	3+410	87	94	94	94	89	94	96	92	0.4	93	
555 559	3+422 3+447	<u>92</u> 94	<u>83</u> 89	92 95	94 96	96 97	94 97	95 95	92 92	94	94 95	
565	3+447	94	82	95	96	97	97	95	92		95	
565	3+483	84	96	97	95	97	96	95	92		95	
571	3+520	85	86	89	96	97	92	97	97		95	
574	3+538	74	47	94	96	98	93	95	74		92	
577	3+556	84	64	92	88	98	96	91	94		93	
583	3+593	38	48	95	95	98	96	92	97		96	
587	3+617	52	39	52	63	92	48	64	98		70	The words as had 0.4
589	3+630	52	71	92	97	100	64	57	85		83	Threshold 24
592	3+648	25	57	92	96	68	90	100	83		88	
595	3+666	91	84	40	73	33	91	58	36	_	55	
595	3+666	86	96	97	81	99	104	46	73		83	
601 M ini	3+703	77 15	57	34 #	97 28	30	98 48	19	97 36	#	63 37	
Maxi	1	15 97	<u>10</u> 97	#	28 99	<u>30</u> 100	48 104	19 100	<u>30</u> 98	#	<u> </u>	MAEROPORTS DE MANTRÉAL Stantec
Mov	1	97 64	63	#	99	89	88	88	88	#	89	
Écar	1	21	23	10	8	12	9	14	10	#	8	
2007	1		1 2 9								Ŷ	

6 HFWD Survey Results HFWD Modulus Back Calculation

6 Site Surveying

A complete site survey covering the RWY, TXY's, HB's 06 & 24, approach systems, perimeter access roads, utilities and aircraft arresting systems was made using:

- Conventional survey using a total station with 3 mm accuracy
- Lazer survey with 2 mm accuracy
- GPS survey used in grassed areas
- Over 230,000 survey points taken

7 Drainage

•A complete inspection campaign was initiated before the actual design phase started

•This campaign was used to determine the condition of:

- existing foundation drains
- o existing main collectors
- \circ culverts
- o catch basins
- o manholes
- o ditches
- \circ wetlands

•Over 12,000 m of drains and 130 manholes were inspected

8 Electrical Work

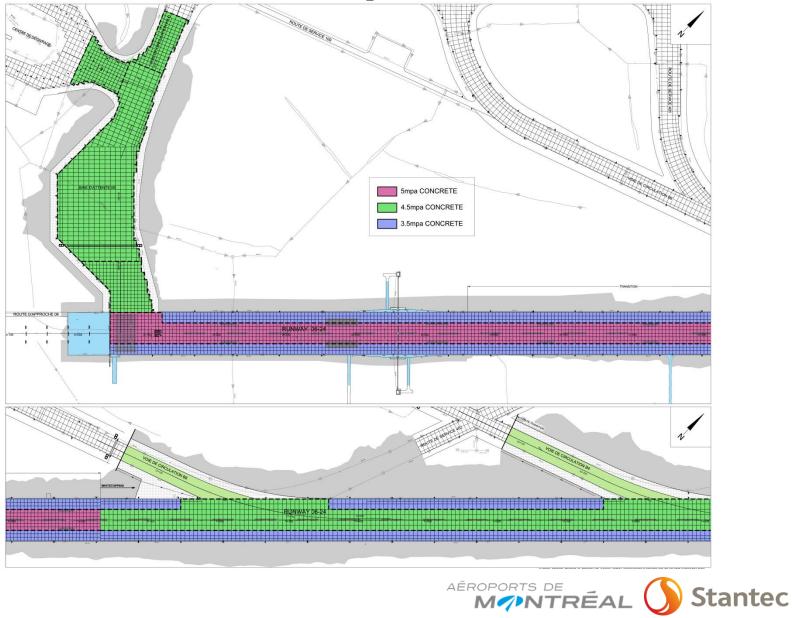
- A full inspection campaign was completed by the electrical team
- All electrical systems of the RWY have to be replaced
- Approximately 750 lights, over 150,000 m of wirings, and over 38 electric circuits affected

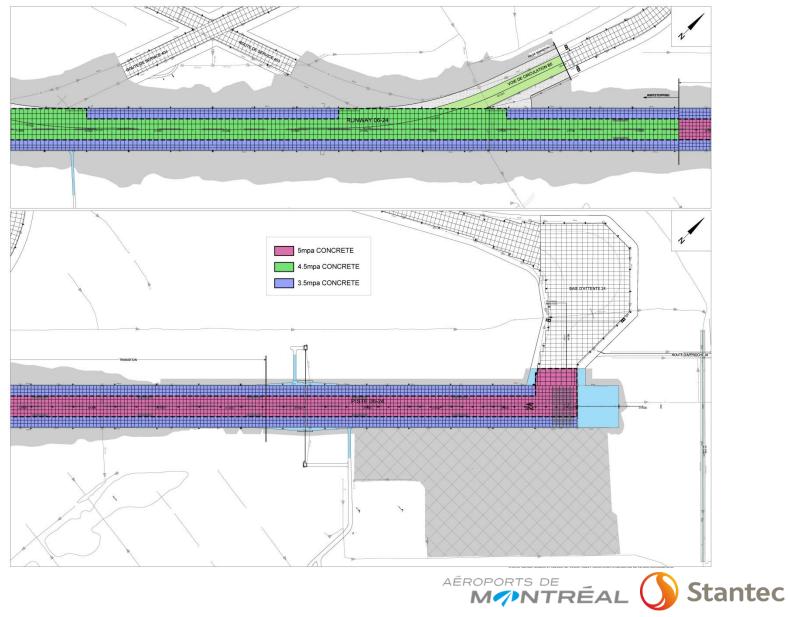
- 1. Asphalt overlay on existing concrete surface
- 2. Rigid pavement overlay on existing concrete surface
- 3. Reconstruction of the keel section and intersections with TWY & HB
- 4. Rubblizing of existing rigid pavement with flexible/rigid pavement overlay

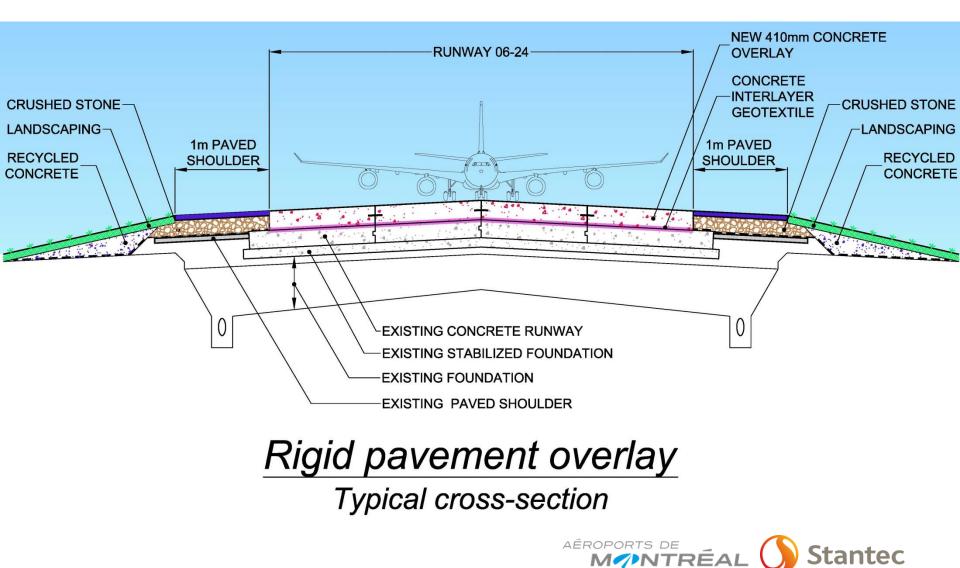
After the preliminary studies, the results allowed the following conclusions and decisions:

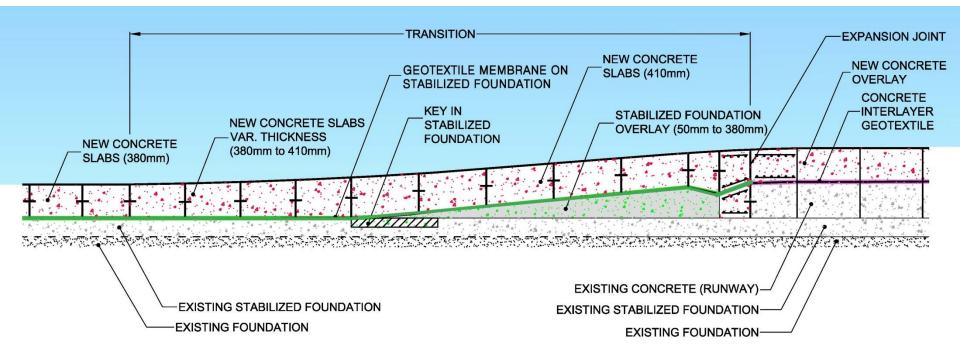
- Option 1 was excluded because:
 - it would not solve the weak stabilized foundation
 reflective cracking will occur
- Option 4 was excluded because of the complexity and scale of the electrical installations in the rubbilized materials
- Options 2 and 3 were identified as technically feasible

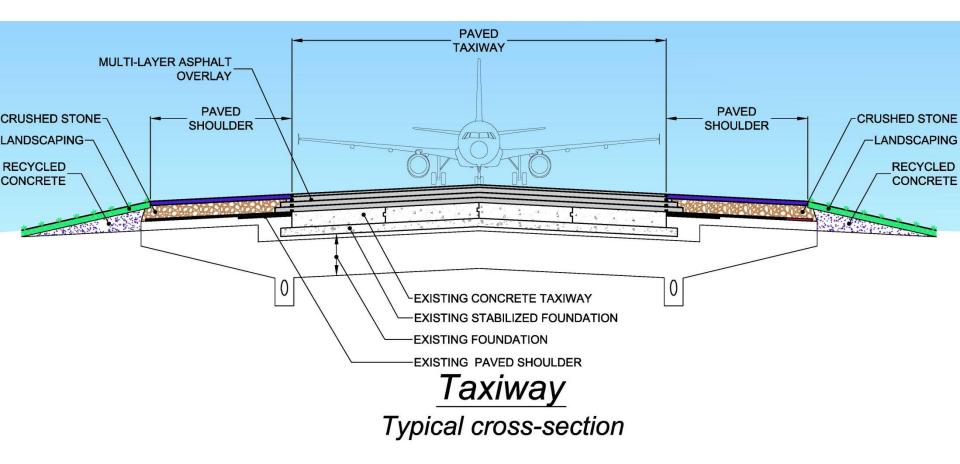
	Option 2 Rigid pavement overlay	Option 3 Reconstruction of the keel section and intersections with TXY and HB
	Costs are 10 to 15% less	Costs are 10 to 15% more expensive
Budget	Savings for reuse of demolition waste	Additional costs for the disposal of demolition waste
	The cost overrun risk is low according to the stabilized foundation quality	The cost overrun risk is high according to the stabilized foundation quality
Duration	Possibility of construction on a continuous 11 month period	Construction on a 2-year period
Quality	Complete construction: new runway	Partial construction : partially new runway
Sustainable development	On-site reuse of concrete waste from the demolition	Considerable volume of waste materials from the demolition to dispose elsewhere


Final decision, a hybrid one:


- Complete reconstruction of the thresholds was decided following the poor coring results, particularly those of threshold 06 which demonstrated that the stabilized foundation required an intervention and eliminating any intervention on the existing aircraft arresting systems (AAS).
- The rigid pavement overlay was reduced to the center portion of the RWY, with replacement of shattered slabs and stitching of longitudinal cracks.
- Transitions toward rapid exit TWYs B6, B5 and B4 are in asphalt cement overlay on existing rigid pavement.
- Edges of the RWY, HB and safety area are filled with recycled material from the demolition of both thresholds.

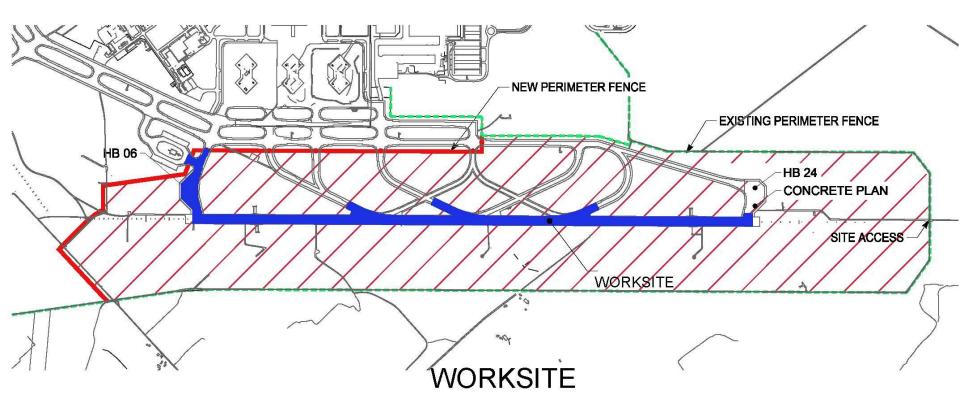



- LEDFAA was used to design the pavement requirements
- Based on the actual and projected traffic for YMX, a 360 mm thick concrete slab is enough
- The existing slabs are 7.5 m by 6 m, demanding a minimum slab thickness of 410 mm
- Concrete being made using a limestone aggregate makes the concrete less sensitive to temperature variation
- Use a membrane on all surfaces to provide:
 - A degree of unbonding to the underlying existing pavement and Stabilizing base limiting the transferring of stresses
- In each threshold, the slabs are 5 m x 5 m and 380 mm thick



Transition (between rigid pavement overlay and reconstruction)

Typical profile


10 Final Concept: Storm Drainage

- •Replacement of all existing grates
- •5 type D manholes must be replaced
- •90 manholes (type B, D and F) must be adjusted and/or raised
- in concrete overlay section2,000 m of ditches to be reprofiled1,300 m of ditches to be cleaned
- •2,000 m of drains must be replaced•500 m must be reinspected

10 Final Concept: Worksite Layout

11 Procurement Strategies

A prequalification for potential bidders was decided, screening potential contractors on the basis of:

- experience in similar projects
- staff qualification
- equipment inventory and availability

3 contractors were selected at the end of this process.

These 3 contractors received an invitation-to-bid (ITB), and the lowest bidder was selected.

12 Construction Schedule

Preliminary work :

October & November 2015

Construction duration:

• December 1st, 2015 to November 16th, 2016

Questions?

