

What the Pilot Knows Tips for Airport Operators

Ray Clement, P. Eng CBR Technology Inc.

CBR ECHINOLOGY INC.

SWIFT Conference | September 17th, 2015 | Montreal, Quebec

Outline

Introduction Clients • Customers • Facility Users IFR Rates of Climb Aircraft Performance Factors Closing Remarks

INTRODUCTION

ESCADRE 19

BFC COMOX

Geal Cause

BUATAC NET

19 WING @

Instante Proportiente de Million Ministerie etca

DND Audits TP312 Aerodrome Standards and Recommended

- Practices
- Vs FAR 25
 Take-off Profile

EXCEPTIONAL PILOT

- One day a long, long, long time ago, there was this pilot who, surprisingly, was not an arrogant 'know-it-all'...
- But it was just one pilot...
- And it was a long, long. long time ago...
- And it was just for that one day...

FAR 25 Take-off Profile

Runway Profiles

FAR 25 Take-off Profile

TP-312 Aerodrome Standards & Recommended Practices

Clients • Customers • Facility Users

Getting Maximum Benefit from Airfields

Airfields should provide maximum benefit to the end user *safely*, *legally and economically*.

- Safe (complying with aircraft certification flight manual)
- Legal (safety and economy come first!)
 - Airfield facilities and exemptions
 - Declare available facilities
 - Minimize reductions to performance
- Economical (cost effective for both airfield & aircraft operators)

IFR Rates of Climb

King Air A-100 Flight Manual

• -5°C

- Pressure altitude 10000 feet
- Weight 11000 lbs

RATE OF CLIMB 1380 FT/MIN

Revised: September 17, 1971

King Air A 100 Airplane Flight Manual

4-15

Rates of Climb (Restricted Canada Air Pilot)

Factors from previous slide include:

• -5°C

- Pressure altitude 10000 feet
- Weight 11000 lbs
- Rate of climb 1380 feet/minute

MISSED APPROACH CLIMB RATE V/V (FPM)												
GROUND												
SPEED (Knots)	90	120	140	160	180	200	250	300				
460 FT/NM												
(ft/min)	690	920	1080	1230	1380	1540	1920	2300				

MISSED APPROACH Requires a minimum climb gradient of 460 ft/NM to 10600

Air A100 Airplane Flight Manual

FAA Approved sed: September 17, 1971

416

RESTRICTED CANADA AIR PILOT This aeronautical information/data is published for OPS SPEC use only

Rates of Climb (Restricted Canada Air Pilot)

Factors from previous slide include:

• - 5°C

- Pressure altitude 10000 feet
- Weight 11000 lbs
- Rate of climb 100 feet/minute

MISSED APPROACH CLIMB RATE V/V (FPM)											
GROUND SPEED (Knots)	90	120	140	160	180	200	250	300			
460 FT/NM											
(ft/min)	690	920	1080	1230	1380	1540	1920	2300			

MISSED APPROACH Requires a minimum climb gradient of 460 ft/NM to 10600

Aircraft Performance Factors

Conditions Affecting Aircraft Performance (Maximum Take-of/ Landing Weight)

Environmental (METAR) Wind speed and direction **Barometric pressure** (air density) Temperature Cloud ceiling Precipitation Visibility **Dew Point Lightning Direction**

Physical Conditions

Runway length (stopways and clearways can increase aircraft performance) Runway contamination Runway slope Obstacles

Environmental Condition: Wind speed and direction

Wind Sock

Often the first segment is held open by the frame. If the windsock is missing, you probably shouldn't be at the airport. If the pole is missing, you're probably on your way to Oz.

Beaufort Scale (Wind)

Beaufort number	Wind (km/h)	Wind (mph)	W Cl	/ind assific	cation		Wind	effects on land		Wind effects on water			
			v			~~~~		,	,				
			1	1–5	1–3	Light	tair	Smoke drift indicates wind direction; still wind vanes	Scalelike rippl	es with no foam crests			
			2	6–11	4-7	Light breeze		Leaves rustle; wind felt on face; wind vanes moved by wind	Small wavelets; crests have a glassy appearance and do not break				
			3	12-19	8–12	Gentle breeze		Leaves and twigs constantly moving; light flags extended	Large wavelet whitecaps	s; crests begin to break; scattered			
		4	20–29	13–18	Moderate breeze		Dust and loose paper raised; small branches move	Small waves 1 whitecaps	-4' becoming longer; many				
			5	30-38	19-24	Fresh breeze		Small trees with leaves begin to sway	Moderate, longer waves 4–8'; whitecaps common; some spray				
			6	39–50	25-31	Stror	ng breeze	Larger tree branches moving; phone lines whistle	Larger waves 8–13'; whitecaps common; more sprav				
6	39-50	25-31	St	rong l	Breeze	e	Large	tree branches		Larger waves 8	3-13';		
							movi	ng; phone lines		whitecaps con	nmon;		
							whistle			more spray			
10		87–101	55-63	Storm		Trees uprooted; considerable structural damage to buildings	very high wav crests; sea wh	es, 20–30°, with overnanging ite with blown foam					
			11	102-115	64–72	Violent storm		Widespread damage	Huge waves, 3 air filled with s	30–45'; foam patches cover sea; spray; visibility reduced			
			12	>115	>72	Hurricane		Widespread damage	Huge waves, over 45'; air filled with foam; sea all white with driving spray; little visibility				

Effects of Temperature and Pressure on Aircraft

Two basic scenarios:

1. The **PRESSURE** varies from ISA standard.

If the pressure is higher than ISA, then the altimeter reading in the aircraft will provide an elevation higher than the actual flight elevation.

2. The **TEMPERATURE** varies from ISA standard.

If the temperature is lower than ISA, then the altimeter reading in the aircraft will provide an elevation higher than the actual flight elevation.

Environmental Condition:

Barometric Pressure (air density)

If the pressure is higher than ISA, then the altimeter reading in the aircraft will provide an elevation higher than the actual flight elevation.

Theory of Barometric Pressure

Aircraft altitude is provided by an aneroid barometer.

- Pressure decreases with height.
- Aircraft goes up, pressure goes down. The altimeter is reading a height.

Aircraft altimeter displaying an altitude of 10,180 feet.

Altitude is recorded as height above Mean Sea Level (MSL). ^{an altitude}

- Reading a pressure value, not a place.
- Local air pressure at MSL is called the QNH or altimeter setting.

Subscale (Kolsman) sets the pressure at which the altimeter will set as the airport elevation, or QNH. The greater the altitude the lower the pressure (approximately 1" of mercury per 1000' near sea level.

More about Barometric Pressure

International Standard Atmosphere (ISA) is a model used for the standardization of aircraft instruments.

- North America Pressure range measure is 29.1 to 31 In Hg (Stnd A.S.L. pressure is 29.92)
- International Corresponding values are 985.72 to 1050.08 millibars (Stnd A.S.L. pressure is 1013.25 mbar)
- Standard temperature is 15°C.

It was established to provide a common reference for temperature and pressure. ISA uses tables of values over a range of altitudes.

Flying in ISA-plus temperatures will hamper aircraft performance. If ISA-plus temperatures are excessive, aircraft may be unable to maintain altitude, or climb at the anticipated rate.

Barometric Pressure & Altimeters

At small airports:

- Two altimeters are used to ensure a correct reading.
- If a difference of more than 5/100" Hg exists, then both are considered inoperable.
- The elevation of the airfield is set on the altimeter at the site and the corresponding barometric pressure is read.
- The reading is transmitted to the pilot for flight elevation purposes.

Dual Altimeters Used at Small or Remote Sites

Pressure Change (high to low)

Recall normal range (International) is 985.72 to 1050.08 mbar

Environmental Condition:

Temperature

If the temperature is lower than ISA, then the altimeter reading in the aircraft will provide an elevation higher than the actual flight elevation.

Cold Temperature Corrections

- Pressure altimeters are calibrated to indicate true altitude under International Standard Atmosphere (ISA) conditions.
- Any deviation from ISA will result in an erroneous reading on the altimeter.
- In the case when the temperature is higher than ISA, the true altitude will be higher than the figure indicated by the altimeter, and the true altitude will be lower when the temperature is lower than ISA.
- The altimeter error may be significant and becomes extremely important when considering obstacle clearances in very cold temperatures.
- Unless otherwise specified, the destination aerodrome elevation is used as the elevation of the altimeter source.

Temperature Change

Cool Air

Temperature Altitude Correction Chart

			Altitue Corr	ection Cha	rt									
A/D		HEIGH		VE THE	ELEVA	TION	OF THE	EALTIN	ЛЕТЕR	SETTIN	NG SOL	JRCE (f	eet)	
Temp °C	200	300	400	500	600	700	800	900	1000	1500	2000	3000	4000	5000
0	20	20	30	30	40	40	50	50	60	90	120	170	230	290
-10	20	30	40	50	60	70	80	90	100	150	200	290	390	490
-20	30	50	60	70	90	100	120	130	140	210	280	430	570	710
-30	40	60	80	100	120	130	150	170	190	280	380	570	760	950
-40	50	80	100	120	150	170	190	220	240	360	480	720	970	1210
-50	60	90	120	150	180	210	240	270	300	450	600	890	1190	1500

RESTRICTED CANADA AIR PILOT This aeronautical information/data is published for OPS SPEC use only

Example

Referring back to our IFR chart, the airfield is at 2,600' ASL. The aircraft must climb to 10,600'ASL (8,000 feet above the airfield elevation).

If the ground temp is -40° C, the altitude correction would be 1940 feet (970 X 2].

The pilot must climb to 12,540' (10600 + 1940) on the aircraft altimeter to have obstacle clearance.

All of the arrival step-down altitudes must have the cold temperature correction applied.

Physical Conditions

Declared Distance (Runway Length) Runway End Safety Area (RESA) Line-up Allowances Runway Slope Runway Contamination Obstacles

Declared Distance

About RESA

Runway End Safety Area (RESA)

- ' Defined in Annex 14 & Explained (3.4)
- ' At each end of runway strip
- ' Purpose: to reduce the risk of damage to an aeroplane undershooting or overrunning the runway
- ' Not included in declared distances
- ' Minimum length: 90 m
- ' Width: twice that of runway

For small airports, why not?

RESA Dimensions (Code 3 and 4 Runways)

ICAO <u>Recommendations</u>

- 60m Runway Strip
- 90m Required minimum beyond
- 240 m Recommended minimum Strip

The Reason for RESA

Line-up Allowance (200' aircraft)

Runway 17R from either taxiway

 180° turn = 1.7x200' = 340' line-up allowance

Line-up Allowances

- A distance penalty is incurred when an aircraft leaves the taxiway and lines up on the runway before beginning take-off roll.
- It is most economical to allow aircraft to taxi onto the runway end.
- One foot of taxiway costs less to build and maintain than one foot of runway.

Runway Slope

To determine take-off performance, *aircraft operators* use the runway slope determined by the difference in threshold elevations divided by the total runway length.

EXAMPLE: Sanikiluaq, Nunavut

- Runway center portion is significantly lower than both thresholds.
- The threshold elevation difference is only 4 feet (over 3800 feet = 0.1% slope).
- However, if you refer to the CFS, the slope shown is Rwy 09 down 0.9% and Rwy 27 down 1.2%.

Sanikiluaq, Nunavut

Closing Remarks

Fokker F-28 Gravel Runway

	KAA	A			FLA	PS 18		AAA				
	ELEV.	O FT							AN	Y AIR	PORT	
	MAX T	EMP 50C			FOKKE	R F-28			ANYWI	HERE,	USA	
	RB183	MK555-1	5 ENG	TAK	E OFF PI	ERFORMA	NCE		١	VAR	0	
	DIINUA	Y NO	01	02	03	04	05	06				
	Round	1 110	01			• •			THRUST	TNDE	x	
	C ·	CI TMB		۱۸		ЦΤ			ENG AN	TT-TC		
	C	t TMTT		v	VLIG				OFF		5 1	
	14	66500	ECOLOR	50470F	622008	65120F	679505	700005	162	166	7	
	-14	66500	562401	59470	62300F	65120F	67950F	70000	162	100	10	
	-12	66500	20120F	59330F	0210UF	64970r	6//9UF	700001	102	100	10	
	10	66500	EEOOOF	E0200F	62020F	61020F	67640F	700005	162	166	14	
	-10	66500	559901	592001	62020F	64630	67640F	70000	102	100	14	
	-8	66500	558/OF	59070F	61890F	64680F	67480	700001	162	100	18	
	-6	66500	55740F	58930F	61750F	64540F	67330F	70000F	162	166	21	
	-4	66500	55610F	58800F	61610F	64390F	67170F	69960F	162	166	25	
	-2	66500	55490F	58670F	61480F	64250F	67020F	69790F	162	166	28	
	0	66500	55360F	58540F	61340F	64100F	66860F	69620F	162	166	32	
	2	66500	55230F	58400F	61200F	63950F	66710F	69460F	162	166	36	
	4	66500	55110F	58270F	61070F	63810F	66550F	69290F	162	166	39	
	6	66500	54980F	58140F	60930F	63660F	66390F	69120F	162	166	43	
	8	66500	54850F	58000F	60790F	63520F	66240F	68950F	162	166	46	
щ												
<u>r</u>	10	66500	54730F	57870F	60660F	63370F	660805	687905	162	166	50	
	12	66500	54600F	577405	60520F	632305	65930F	68620F	162	NA	54	
	14	66500	54000F	576005	60320F	63090F	657708	COULOF	162	1123	57	
	14	66500	54460F	576002	60360F	630807	65770F	C0200F	162	NA NA	57	
5	10	66500	543501	574705	60250F	62930F	6562UF	68290r	162	NA	61	
Ϋ́	18	66500	54220F	5/340F	POITOR	62/90F	65460F	68120F	162	NA	64	
ш												
Δ	20	66500	54100F	57210F	59970F	62640F	65310F	67950F	158	NA	68	
Ξ	22	66500	53970F	57070F	59840F	62500F	65150F	67790F	153	NA	72	
2	24	66500	53490F	56570F	59320F	61950F	64560F	67150F	148	NA	75	
Ш.	26	66500	53010F	56070F	58810F	61390F	63980F	66520F	143	NA	79	
	28	66500	52540F	55560F	58290F	60840F	63390F	65890F	138	NA	82	
1 - C												
	30	66500	52060F	55060F	57770F	60290F	62800F	65260F	132	NA	86	
	32	66500	51410F	54380F	57070F	59540F	62000F	64400F	128	NA	90	
	34	66500	50760F	53690F	56370F	58790F	61200F	63540F	122	NA	93	
	36	65700	50110F	53010F	55670F	58050F	60400F	62680F	117	NA	97	
	38	64750	49460F	52330F	54970F	57300F	59610F	61820F	111	NA	100	
	40	63800	48810F	51640F	54260F	56550F	58810F	60960F	105	NA	104	
	42	62750	48160F	50960F	53560F	55800F	58010F	60110F	99	NA	108	
	44	61700	47570F	50330F	52900F	55140F	57320F	59390F	93	NΔ	111	
	46	60550	46970F	497105	522508	54480F	566408	59670F	97	NA	115	
	48	59400	463805	490905	515905	538205	559505	579505	80	NA	110	
	50	59250	457905	49050F	51590F	53020F	559500	575301	70	11/2	122	
_	50	38230	457601	404001	50950r	551/01	55260r	572401	/2	NA	122	
<u> </u>	DIIMUAN	TENCOU	4000	4500	5000	FEOO	6000	6500				
	DUNNA		4000	4500	5000	5500	8000	6500				
	RUNWA	SLOPE	0.0	0.0	0.0	0.0	0.0	0.0				
	ADD LI	S/KT HW	115	115	110	110	115	120				
	SUB LE	3S/KT TW	410	430	430	435	460	480				
	LEVEL	OFF HT	600	600	600	600	600	600				
		LOW QNH:	SUBTRA	ACT 70 I	B PER M	IB F	IIGH QNH	I: NO CO	DRRECTI	ON		
	APPLY	PERFORMA	NCE COR	RECTION	I AS REC	UIRED *	** OBSE	RVE STR	RUCTURA	LLI	IITS '	***
	PERFC	RMANCE D	ATA BAS	ED ON N	O SLOPE	. NO OF	STRUCTI	ONS. GI	RAVEL S	URFAC	E RUP	WAY
L	1. FOR	ENGINE	FAILURE	USE SP	ECIAL F	NGINE	NOPERAT	IVE PRO	CEDURE			
	IF	NO SPECT	AL PROC	EDURE	S PUBLT	SHED. C	LIMB ST	RATCHT	OUT	-		
	2 805	ALL EN	GINES"	DEDVOUL	DE CHEC	W FOR N		EDAD		PDUD		175

2. FOR "ALL ENGINES" DEPARTURE CHECK FOR NORMAL DEPARTURE PROCEDURE OR SID. ISSUED: 24 FEB '92

Fokker F-28 Take-Off Performance (Gravel)

LOAD LIMITS BASED ON RUNWAY LENGTH & TEMPERATURE										
	Runway Length (ft)									
	4000	4500	5000	5500	6000	6500 ft				
Temp		Weight								
-14	56240	59470	62300	65120	67950	70000				
50	45780	48460	50930	53170	55260	57240				
EFFECT OF WIND ON LOAD										
Add Lbs/Kt HW	115	115	110	110	115	120				
Sub Lbs/Kt TW	410	430	430	435	460	480				
* Performance data	based on n	o slope, n	o obstruct	ions, grav	el surface	runway.				

EFFECT OF LOW PRESSURE

Low QNH: Subtract 70 Lb per MB

985 to 1050 diff. is 65 mbar Therefore 60 x 70 lbs = 4200 lbs

Why Care about Airfield Safety?

- Passenger safety depends on it.
- Personal and corporate livelihoods are at stake.
- No agency, whether public or private, should focus on shutting down an airfield for non-compliance of a single non-compliant event.
- Rather, the onus is on all stakeholders to correct deficiencies and ensure airfields are safe, legal and economical.

