Concrete Case Study – JFK Runway 4L-22R Unbonded Overlay

2016 CAPTG Workshop SWIFT 2016 Conference

September 19, 2016

Guy Zummo, P.E. Chief Civil Engineer

Presentation Summary

Port Authority overview

Pavements

Runway 4L-22R Program

FAA/PA Field Testing

Construction

Program Risk Mitigation

Questions

The Port Authority

- Established in 1921.
- Created to promote the commerce of the Port District and to undertake port and regional improvements including development of major infrastructure improvements.
- Facilities include America's busiest airport system, marine terminals and ports, the PATH rail transit system, two tunnels and four bridges between New York and New Jersey, the Port Authority Bus Terminal and the World Trade Center.

Port Authority Facility Map

Aviation

John F. Kennedy International Airport LaGuardia Airport Newark Liberty International Airport Stewart International Airport Teterboro Airport Atlantic City International Airport

Bridges

Bayonne Bridge George Washington Bridge Goethals Bridge Outerbridge Crossing

Terminals

Port Authority Bus Terminal George Washington Bridge Bus Terminal Journal Square Transportation Center

Tunnels

Holland Tunnel Lincoln Tunnel

Port Commerce

Port Jersey-Port Authority Marine Terminal Brooklyn-Port Authority Marine Terminal Elizabeth-Port Authority Marine Terminal Howland Hook Marine Terminal Port Newark

Port Authority Trans-Hudson

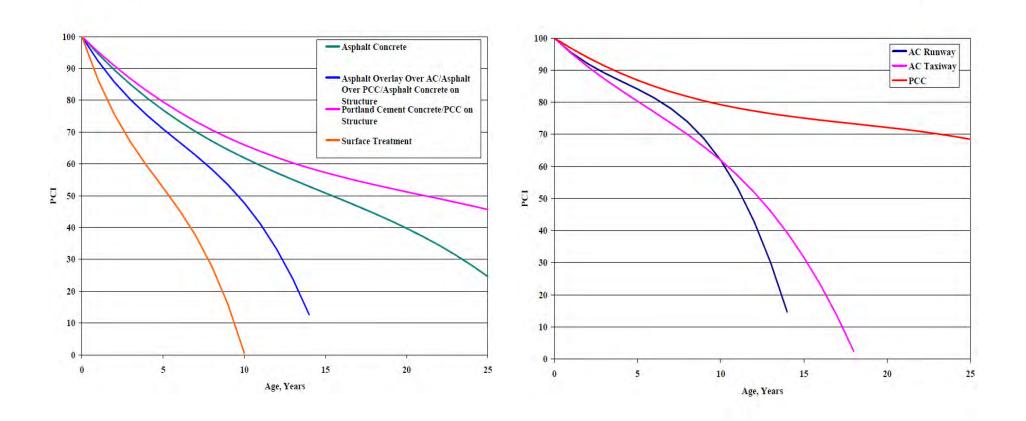
PATH Rail Transit System

WTC

Snapshot of PA Aviation assets

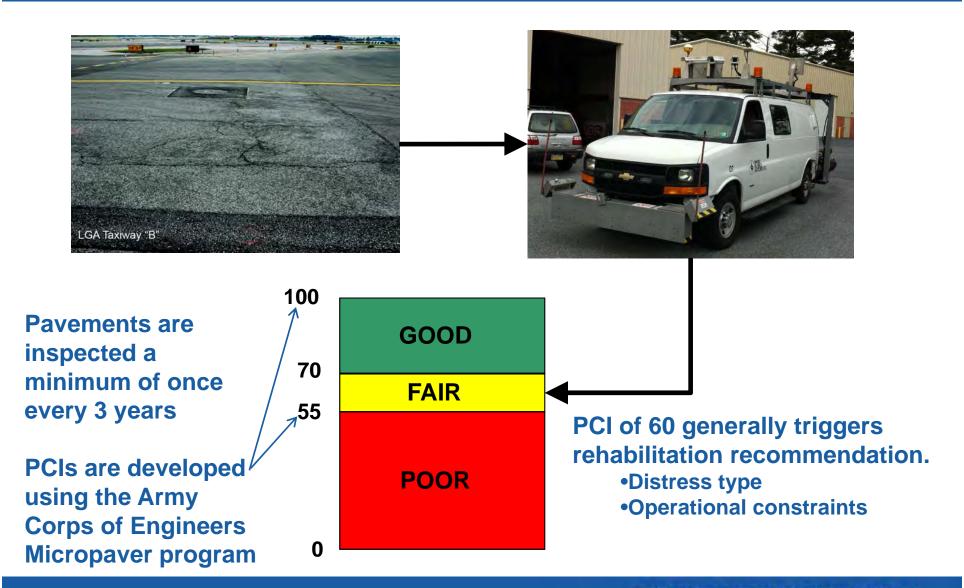
PA airports encompass an area that is 80% of the size of Manhattan

- 285 miles of pavement → 189 miles of roadway, 74 miles of taxiways and 25 miles of runway length
 - LGA: 20 mi. of roadways, 10 mi. of taxiway and 2.6 mi. of runways
 - JFK: 100 mi. of roadways, 34 mi. of taxiway and 8.4 mi. of runways
 - EWR: 50 mi. of roadways, 18 mi. of taxiway and 5.3 mi. of runways
 - Teterboro: 3 mi. of roadways, 2 mi. of taxiway and 6 mi. of runways
 - Stewart: 16 mi. of roadways, 7 mi. of taxiway and 3 mi. of runways
 - 6,687 sign structures and towers
 - 98 roadway bridges and ramp structures
 - 425 buildings and structures containing 20,766,963 sq ft.
 - Electrical power distribution, aeronautical lighting systems, fire protection, life safety systems, and vertical transportation

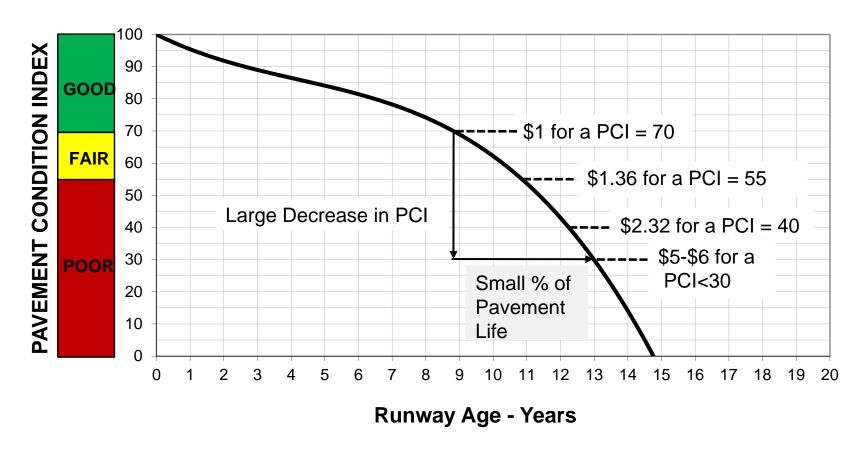


Pavements

Experienced Pavement Live


- Asphalt
 - Runways & Taxiways (New) 20 Years
 - Runways & Taxiways (Rehabilitation) 10 Years
 - Roadways (New) 20 Years
 - Roadways (Rehabilitation) 10 Years
- Concrete
 - Runways & Taxiways 30+ Years
 - Roadways 40 Years

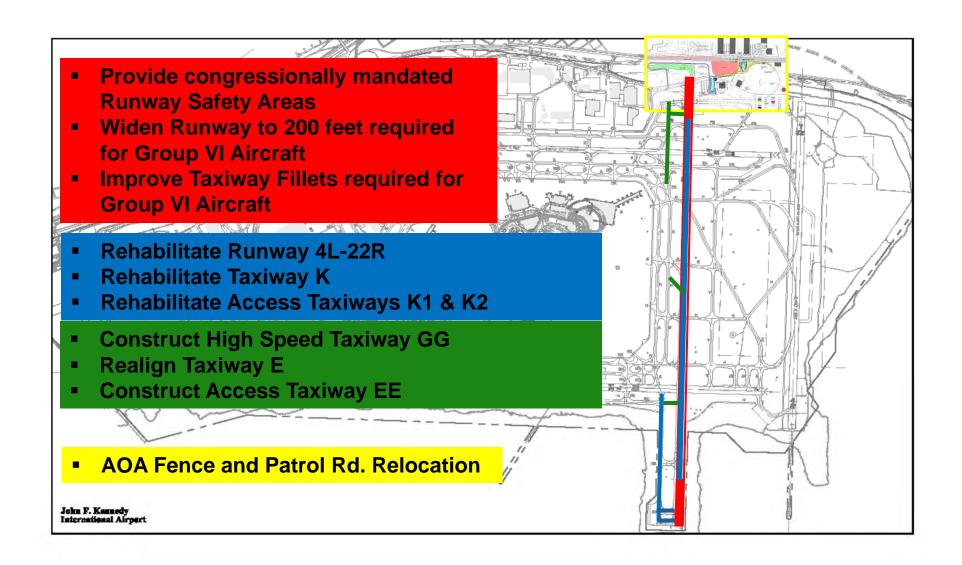
PCI Prediction Models



Figures developed from the Port Authority Pavement Management System

Keeping Airfield Pavements in a State of Good Repair

State of Good Repair Typical Runway


Optimal time to rehabilitate pavement is when it reaches fair condition. Otherwise, delaying the pavement rehabilitation by two years increases the cost by 36%. An additional two year delay increases the cost by five or six times.

Runway 4L-22R Program

JFK - Runway 4L-22R

RUNWAY 4L-22R PROGRAM - SCOPE OF WORK

Overall Program Development

Meet with all stakeholders early and often

- Every stakeholder has different expectations
- Operations Group What are the airfield requirements?
- Construction Group Can we build
- it this way?
- Security Group How do we keep the airport safe during construction?
- Contract and Estimating Groups How much does the program cost?

Develop working staging/scoping drawings for review

- Stakeholder workshop
- FAA coordination
- Environmental Process
- Evaluate lessons learned from prior contracts

Overall Program Development Continued

Finalize Scope

- 200-foot wide PCC FAA Group VI Runway
- New PCC and AC taxiways
- New drainage system
- New lighting system

Develop contract documents

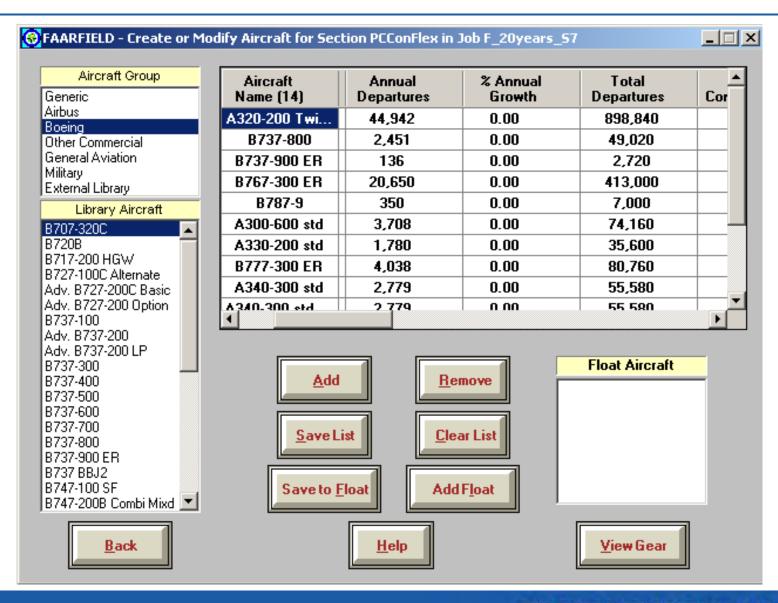
- Drawings, Specifications and Estimates
- Finalize contractor requirements including contractor laydown areas, haul routes, utility requirements and commissioning type drawing
- Hold contractor's workshop

Construction

- Scheduling
- QA/QC
- Security
- Staging areas

Overall Program Schedule

Planning	July 2010	June 2011
Preliminary Design	June 2011	April 2012
Final Design	April 2012	July 2014
Construction	July 2014	December 2015


Pavement Design

Aircraft Mix - Departure Volume & Growth Factor

Year	Yearly Passenger		
2006	42,629,407		
2025	50,240,131		
2045	51,606,901		
Growth Rate (From 2006-2025)	1.1785		

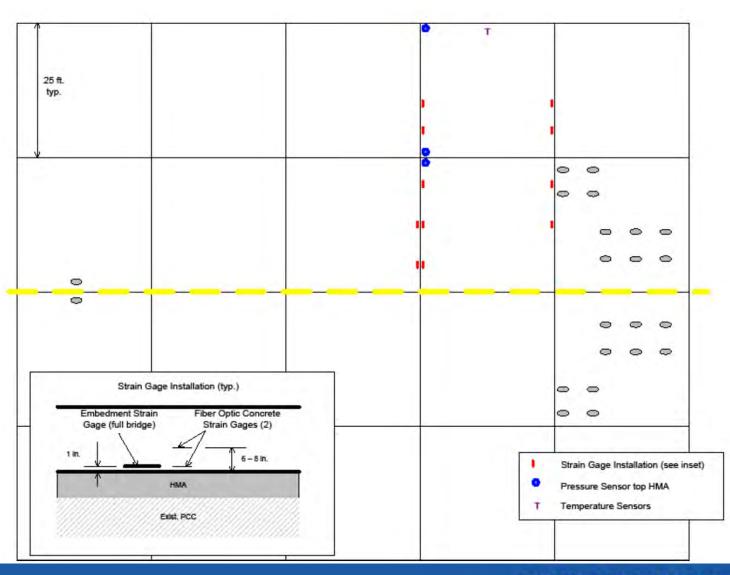
FAA Code	Model	Maximum <u>Take-</u> <u>Off</u> Weight, lb	Gear Type	Departures @ Year 2006	FAARFIELD INPUT AIRCRAFT	TOTAL Departures @ Year 2006	Projected Total Departures @ Year 2025	
B721	Model 727-100 (C-22)	169,000	Dual	22	B737-800			
B727	Model 727-100	169,000	Dual	8				
B732	Model 737-200 (VC96)	128,000	Dual	9				
B733	Model 737-300	138,500	Dual	39		2.000	2,451	
B734	Model 737-400	138,500	Dual	1				
B735	Model 737-500	133,500	Dual	339		2,080		
B736	Model 737-600	145,500	Dual	2				
B737	Model 737-700	154,500	Dual	292	-			
C130	Lockheed C-130 Hercules	155,000	Dual	3			\ /	
B738	Model 737-800	174,200	Dual	1365				

Pavement Design Parameters - FAARFIELD Input

FAA/PA Field Testing

FAA Pavement Monitoring Equipment

FAA and PA worked in conjunction with the Contractor to install pavement sensors to measure pavement temperature and real time strain in actual field conditions.


Camera for monitoring aircraft Movement for dynamic data collection

Solar panels for providing power for the DAS

Cabinet for the DAS

Data Acquisition System (DAS) Cabinet, Camera, and solar panels for powering the system.

FAA Gage Layout Concept

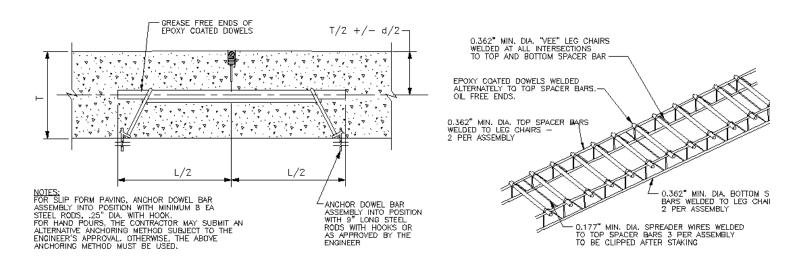
Embedded Concrete Strain Gage

Embedded Concrete Strain Gage & Pressure Cell

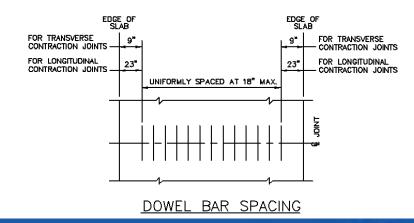
Final Pavement Designs

Runway - PCC

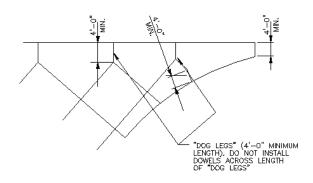
- •Existing AC surface milled approximately 8" and a 2" AC leveling course placed.
- •18-inches PCC
- •1.5-inch diameter, 18-inch long dowels
- •25-foot typical slab size

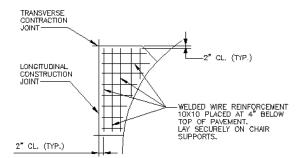

Taxiway - AC

•Existing AC surface milled and overlaid with 3 to 12-inches of AC

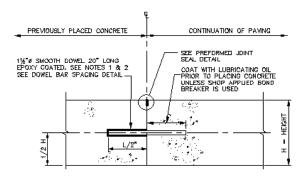

Taxiway - PCC

- Existing AC surface milled and a 2" AC leveling course placed
- •20-inches PCC
- •1.5-inch Dia., 18-inch long dowels
- •20.5-foot typical slab size

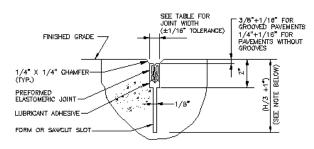

Dowel Bar Assembly



TYPICAL DOWEL BAR ASSEMBLY



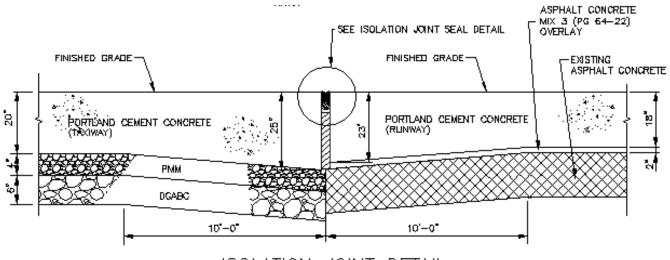
Fillets and Jointing



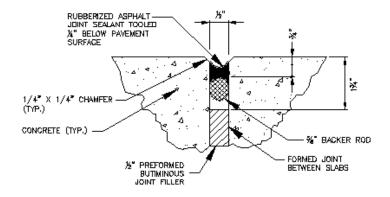
TYPICAL FILLET AND REINFORCEMENT DETAILS

NOTES: 1. FOR SIDE—FORM CONSTRUCTION DOWELS MAY BE INSTALLED THROUGH GASKETED OPENINGS IN THE FORMS OR BY DRILLING AND GROUTING. 2. FOR SUPFORM CONCRETE CONSTRUCTION DOWELS SHALL BE INSTALLED BY DRILLING AND GROUTING.

CONTRACTION JOINT-FORMED N.T.S.



TEMPERATURE* 'F	JOINT WIDTH		
< 60	5/8°		
60 TO 60	9/16*		
> 80	1/2*		
* PAVEMENT SURFACE TEMPERATURE			


NOTE: THE CONTRACTOR HAS THE OPTION OF USING A MODEL 4200 AND 5000 D CONCRETE SAW MANUFACTURED BY HUSQVARMA SOFF-CUT OR APPROVED EQUAL TO CUT THE REQUIRED SLOT AS SOON AS THE CONCRETE WILL SUPPORT THE SAW AND THE CUT DOES NOT TEAR. IF THE GX-4000D CONCRETE SAW IS USED, SLOT DEPTH SHALL BE REDUCED TO 2 1/2". FOR ALL OTHER CONCRETE SAWS, CUT THE SLOT TO THE DIMENSIONS SHOWN.

PREFORMED JOINT SEAL

Jointing

ISOLATION JOINT DETAIL

ISOLATION JOINT SEAL DETAIL

Construction

THREE MAJOR CONSTRUCTION STAGES

THE PORT AUTHORITY OF NY & NJ

Major Construction Quantities

- •AC = 450,000 Tons
- •PCC = 220,000 CY
- Astroturf = 7 acres
- •Grass = 118 acres
- Electrical Ductbank = 25 miles
- •Storm Drainage Piping = 12 miles
- Infiltration Trench = 3 miles
- •Airfield Lighting Cable = 13 miles
- •All Cable = 170 miles
- •Airfield Lighting Fixtures = 2700 each

A million dollars a day in construction!

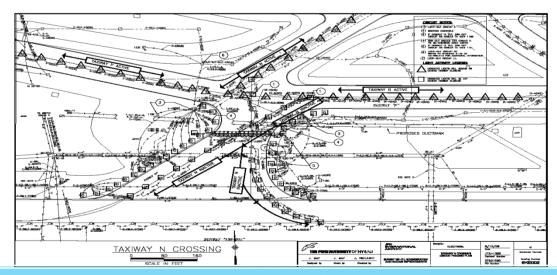
Construction Staging - A Construction Perspective

Meet with all stakeholders early and often

- Operations
- Site Safety
- Site Security
- Haul Routes/Areas available for Contractor's Use
- Temporary Utility Connections
- Keep all stakeholders notified of staging changes

Proximity to active runways

Traffic Mitigation


- Construction brings Construction Traffic
- Traffic Study for Different Construction Stages
- Analysis by PA Traffic Engineering
- Implementation of Recommendations
 - Timing of Traffic Signals
 - Flagging
 - Queuing Areas
 - Haul Route Signage
 - Keeps Traffic off more heavily loaded routes
 - Separates Truck Traffic from Airport Passenge
 - Minimize "Lost" Truckers

Aeronautical Lighting Management

Planned Partial Circuit Shutdowns to meet Operational and FAA Requirements, coordinate between stakeholders including JFK Operations, Electrical Maintenance, Electrical Engineering, and REO

Leveraging Lessons Learned Forward Facility
Design and Construction Guidelines for Future
Aeronautical Lighting Construction Projects

Concrete - Test Section

- Production Test Section
- Means & Methods
- Contractor / Owner Partnering
- Paving Meetings

Electrical Base Can Installation

THE PORT AUTHORITY OF NY & NJ

Asphalt Base and Prep for PCC

Slipform Paving

On-site Materials Testing

Hand Pour Section

Dowel Bar Placement

Contraction Joint

PCC to AC Transition Slab

Artificial Turf Installation

- •Reduced landscape maintenance costs
- Mitigation of bird hazards

Two On-Airport Concrete Plants

- Truck Traffic
- Double Handling of Materials
- Backup Plant Requirements In-place

Water Main Installation and Pavement Crushing Operation

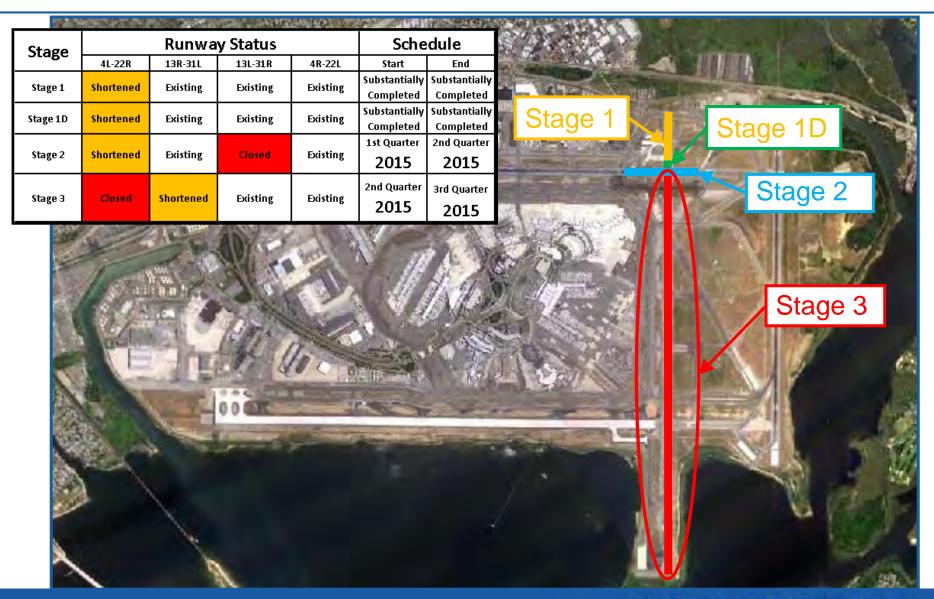
Smoothness testing

PROGRAM RISK MITIGATION

Managing Risks by Making Others Successful

- The Traveling Public Managing Awareness
- The Airlines Managing Expectations
- The Facility Managing Impact on Operations
- •The Contractor Managing Contractual Commitments
- •Enterprise Partners Managing Awareness and Resources

The Travelling Public – Managing Awareness


- Website
- AirTrain/Welcome Center Video
- Articles
- Posters
- Newsletters

Runway Newsletter

STAKEHOLDER PRESENTATIONS OVERALL SCHEDULE

THE PORT AUTHORITY OF NY & NJ

Runway Availability Matrix

		Runway Available Length													
Stage	Start Date	4L		22R		13R		31L		13L		31R		4R/22L	Instrument Approach Category Available
	End Date	TAKE- OFF	LANDING	TAKE- OFF	LANDING	TAKE- OFF	LANDING	TAKE- OFF	LANDING	TAKE- OFF	LANDING	TAKE- OFF	LANDING		
Pre-Construction/ Existing	January 1, 2014 August 8, 2014	11,351	11,351	11,351	8,655	14,511	12,468	14,511	11,248	Existing	Existing	10,000	8,970	,	All Runways F.O.C. (Full Operational Capacity)
Stage 3	April 27, 2015 September 21, 2015		ао	SED		10,974	8,931	10,924	11,248	Existing	Existing	9,513	8,483		R/¥ 4R/22L, R/¥ 13L/31R, R/¥ 13R/31L F.O.C. R/¥ 4L/22R CLOSED
Stage 3 Completed	September 22, 2015 December 9, 2015	11,351	11,010	11,219	7,795	14,511	12,468	14,511	11,248	Existing	Existing	9,513	8,483	Existing	R/W 4R/22L, R/W 13L/31R, R/W 13R/31L F.O.C. R/W 4L ILS 0TS R/W 22R F.O.C.
Final	December 10, 2015	11,351	11,010	11,219	7,795	14,511	12,468	14,511	11,248	Existing	Existing	9,513	8,483	Existing	All Renways F.O.C. (Full Operational Capacity) R/W 41. ILS Return to Service (via flight procedure publication)

18-May-15

Notes:

- 1. For actual runway and/or taxiway closures refer to NOTAMS.
- 2. Available take-off from Runway 31L at Taxiway KE.

Changes to Runway Take-off Distances During Construction

Changes to Runway Take-off Distances After Construction

April 27 to September 21, 2015

Runway 13R				
Taxiway	Distance			
R/W13R	10,974			
PF	10,924			
PE	10,599			
PD	10,274			
PC	9,714			
PA	7,224			
MD	5,907			
MC	5,332			
МВ	4,042			
М	3,779			
L	2,000			
KE	50			

Runway 13L					
Taxiway	Distance				
R/W13L	10,000				
U	9,962				
UA	9,548				
CB	8,949				
CD	7,813				
V	7,751				
w	6,329				
D	4,748				
DB	3,479				
ZA	3,413				
E	2,780				
4L/22R	2,230				
Υ	1,430				
YA	102				

Runway 31R					
Taxiway	Distance				
R/W31R	9,513				
YA	9,411				
Υ	8,083				
22R/4L	7,283				
E	6,733				
ZA	6,100				
DB	6,034				
D	4,765				
W	3,184				
>	1,762				
CD	1,700				
СВ	564				

Thank You

QUESTIONS?

Visit us at: www.panynj.gov

www.linkedin.com/company/port-authority-of-ny-&-nj

https://www.instagram.com/panynj

follow@panynj