

Practical Approach to Rehabilitation of Aged Airport Concrete Pavements

Ludomir Uzarowski, Ph.D., P.Eng. Rabiah Rizvi, P.Eng. Golder Associates Ltd., Ontario, Canada

Jeffrey Lo, P.Eng. WSP|MMM, Calgary , Alberta, Canada

SWIFT, Minneapolis, 2016

- Introduction
- Aged airside concrete pavements
- Distresses
- Maintenance, repairs, rehabilitation
- Case study
- Summary

INTRODUCTION

Objectives

Sharing observations from airports in Canada

Sharing practical experience and solutions

INTRODUCTION

Based on observations at airports in Canada

- Saskatoon
- Edmonton
- Toronto (Pearson)
- Thunder Bay
- London
- Sudbury
- Vancouver

- Part 1 Aged concrete pavements condition, distresses, applied maintenance/repairs and rehabilitation
- Part 2 Case Study from Saskatoon International Airport
 - Engineering
 - Rehabilitation design
 - Construction

AGED CONCRETE PAVEMENTS

- Typical expectation PCC pavements to last 30 years
- Numerous pavements significantly older
- Transport Canada
- Engineering, design, QA, acceptance
- Exhibit extensive distresses mainly in heavily loaded areas
- Pavements originally designed to carry much lower aircraft traffic than currently

AGED CONCRETE PAVEMENTS

Engineering required

- Pavement visual condition inspection (ASTM D5340)
- Borehole and coring investigation
 - Soils, moisture, layers type and condition
- Laboratory testing
- FWD Load Transfer Efficiency (LTE) testing
- Drainage inspection

7

DISTRESSES

Typical distresses

- Longitudinal and transverse cracks of various severity (low to high)
- Corner breaks, joint and crack spalling, D-cracking, scaling, faulting, pumping of fines
- Low to severe Alkali Silica Reactivity (ASR) damage
- Typically poor drainage

- Low severity distresses, mainly cracking
 - Do nothing or stop gap
 - Monitoring condition
 - Checking for FOD potential

Medium severity

- Crack filling
- Crack routing and sealing
- Crack epoxy repair
- Crack repair with HMA
- Joint spall repairs partial depth
- Corner breaks
- Joint resealing

September 22, 2016

High severity

- Structural failure
- Very severe cracks
- Shattered slabs
- Severe faulting
- Severe corner breaks
- Severe D-cracking and scaling

- Identify the cause of distresses
- Determine LTE
- Pavement rehabilitation
 - Soil and moisture condition
 - Granular layers, CTB or fillcrete
 - Stitching
 - Dowel bars retrofitting
 - Slab replacement (the same thickness)
 - Structural HMA overlay
 - Bonded concrete overlay (?)
 - Reconstruction

WSP

- Joints
 - Keyway
 - Sawcut
 - Dowel and tie bars
- Specifications
 - As covered in morning's presentation
 - Based on practice and experience in Canada
 - Some aspects from FAA specifications

September 22, 2016

Taxiway and apron yellow line versus joint locations

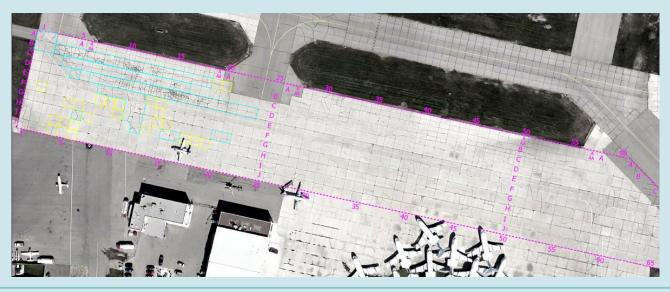
- ASR damage
 - Low severity
 - High severity
 - Current concrete mix design
 - Action required in old pavements

- Drainage
 - Surface
 - Subsurface subdrain systems

Saskatoon International Airport

Aprons 2, 3 and 5
Concrete pavement repairs and rehabilitation
Years 2015 to 2017

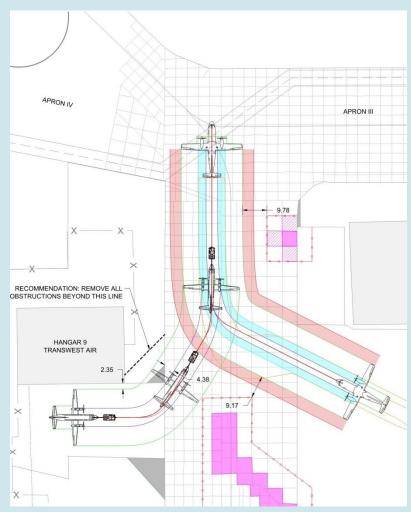
September 22, 2016



CASE STUDY

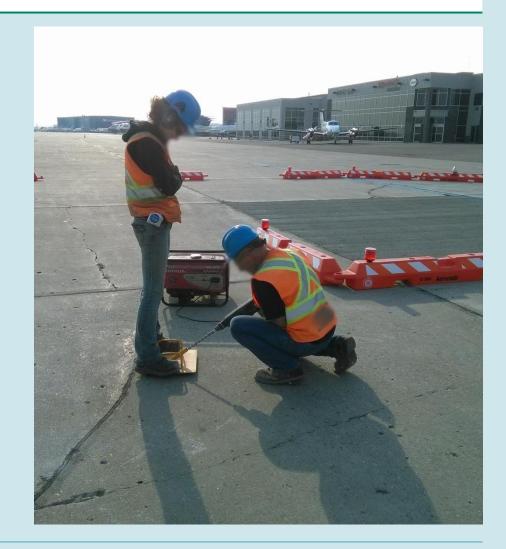
Engineering

- Pavement visual condition inspection
- Borehole and coring investigation
- Laboratory testing
- Pavement rehabilitation design



Operational Considerations

- Closures are disruptive
- Need to accommodate scheduled and irregular operations



CASE STUDY

Cross Stitching

- Helps to immobilize low and medium severity cracks
- Low cost and low operational impact
- Part of a larger long term solution

Concrete Removal

- Requires brute force
- Avoid damaging more areas with sawcutting

Concrete Removal

- Requires brute force
- Avoid damaging more areas with sawcutting

Poor Granular Base

- Hydrocarbon contamination
- Soft subgrade and granular

Poor Granular Base

- Fillcrete replacement
- Grade control is critical

Poor Granular Base

- Fillcrete replacement
- Grade control is critical

Dowel Installation

Important that dowels are level and square

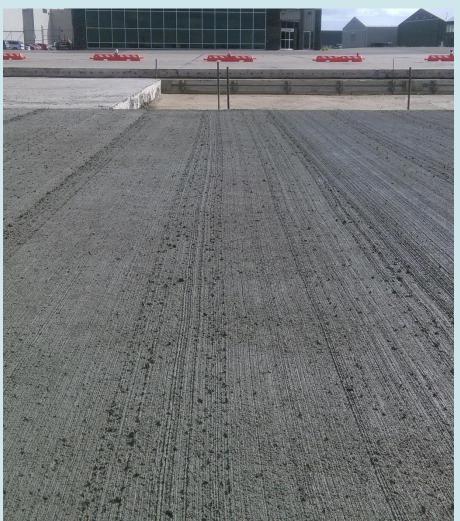
Formwork

 Alignment and Grade control is critical

CASE STUDY

Concrete Placement

- Pump trucks can accelerate work
- Important to manage concrete supply rates
- Finishing is time sensitive



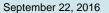
Finishing and Curing

- Curing needs to match the conditions
- Finishing is very time sensitive

September 22, 2016

Green Cutting

- Time is of the essence
- Great variability due to weather and mix design



Joint Sealing

- Alignment is crucial
- Consider fuel resistance and curing times

CASE STUDY

Finished Product

128 panels replaced on Aprons II, III & V since 2015

SUMMARY

- Numerous airports have 40 to 60 years old concrete pavements
- They typically exhibit extensive distresses
- Full reconstruction rarely an option due to the extent of work, cost and impact on airport operation
- Extensive experience with repairing of low, medium and high severity distresses and pavement rehabilitation
- Include proper engineering

In PCC pavements rehabilitation

- Realize they were originally designed for lower traffic than they are carrying now
- Yellow line versus joints location
- Check for ASR damage and protect
- Take care during pavement construction
- Many factors and details can affect the service life of replacement pavements

THANK YOU!

QUESTIONS?

luzarowski@golder.com LoJ@mmm.ca

September 22, 2016

35