INNOVATIVE AIRPORT ASPHALT MIXES – ASPHALT CEMENT AND SUPERPAVE SUMMARY

Ludomir Uzarowski and Rabiah Rizvi, Golder Associates Ltd. Susan Tighe, University of Waterloo Chris Stewart and Kevin Chee, Greater Toronto Airport Authority

SWIFT, CAPTG Halifax, September 21, 2017

- Previous presentations
- Need for innovative airport asphalt mixes
- Asphalt cement impact
- Recently observed asphalt issues
- Advanced testing
- MSCR
- Superpave
- Summary

PREVIOUS CAPTG PRESENTATIONS

- 2010, Chris Stewart, "Best Practices in the Design and Construction of Airfield Asphalt Pavements"
- 2010, Sandy Brown, "Use of Superpave Specifications for Airport Pavements"
- 2013, Kevin Chee, "Asphalt Mix Design Improvements at Toronto Pearson"
- 2015, Rabiah Rizvi, "Advanced Asphalt Technology to Address Shear Distresses on Airfield Facilities"
- 2016, Guy Zummo, "Concrete Case Study JFK Runway 4L-22R, Unbonded Overlay"

NEED FOR INNOVATIVE MIXES

- Continuously increasing traffic with larger aircraft
- Localized areas experiencing very high horizontal forces
- Asphalt shear, shoving, cracking and deformation
- **Occurs despite adequate structural capacity**
- Not considered during pavement design process
- Asphalt materials sensitive to shear
- Airports in Canada, USA, Asia, Caribbean, Europe

4

NEED FOR INNOVATIVE MIXES

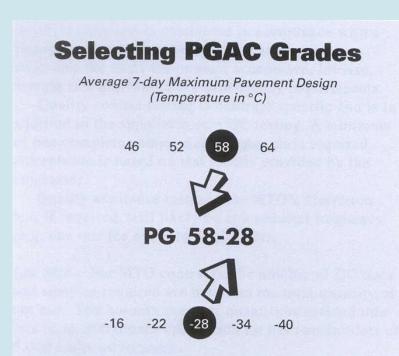
Problems due to asphalt shear failures

- Safety hazard by creating FOD
- Additional strain on airport budget
- Operational constrains
- Additional dynamic stress on aircraft body

Take advantage of advancements in asphalt technology

ASPHALT MIX DESIGN

- Currently extensive research ongoing
 - GTAA, University of Waterloo, Golder
- Fundamental mechanistic properties determine strains due to applies stress
- Investigate shear impact
- Some delays



ASPHALT CEMENT

- Focus of this presentation
- Previous classifications based on viscosity and penetration
- Since late 1990s performance graded system part of Superpave methodology
- PGAC 58-28
- Grade bumping

Minimum Pavement Design (Temperature in °C)

ASPHALT CEMENT

Asphalt cement modification

- Oxidation
- Polymer modification
- Conventional M320 PGAC testing
 - DSR
 - RTFO
 - PAV

September 21, 2017

8

TS-2b

M 320-4

CONVENTIONAL AC TESTING

PGAC shall be according to AASHTO M 320 for the performance grade specified in Contract Documents

		PG 46	5				PG 52						PG 58			1		PG	64		
Performance Grade	34	40	46	10	16	22	28	34	40	46	16	22	28	34	40	10	16	22	28	34	40
Average 7-day max pavement design temp, °C"		<46					<52						<58					<64 >-22 >-28 64 64 100 25 22 -12 -18	64		
Min pavement design temperature, °C"	>34	>-40	>-46	>-10	>-16	>22	>28	>-34	>-40	>-46	>-16	>22	>28	>34	>-40	>10	>-16	>22	>28	>34	>-40
										Ori	iginal Bi	inder									
Flash point temp, T 48, min °C											230	0									
Viscosity, T 316. ⁸ max 3 Pa*s, test temp, °C											135	5									
Dynamic shear, T 315: ^c G*/sinô, ^d min 1.00 kPa test temp @ 10 rad/s, °C		46					52						58					6	64		
								Re	lling Th	in-Film	Oven R	esidue (T 240)								
Mass change," max, percent											1.0	0									
Dynamic shear, T 315: G*/sinδ, ^d min 2.20 kPa test temp @ 10 rad/s, °C		46					52						58					6	4		
0								Pro	essurize	d Aging	Vessel	Residue	(R 28)								
PAV aging temperature, °C'		90					90						100					1	00		
Dynamic shcar, T 315: G* sinô, ^d max 5000 kPa test temp @ 10 rad/s, °C	10	7	4	25	22	19	16	13	10	7	25	22	19	16	13	31	28	25	22	19	16
Creep stiffness, T 313. st S, max 300 MPa <i>m</i> -value, min 0.300 test temp @ 60 s, °C	-24	-30	-36	٥	-6	-12	-18	-24	-30	-36	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	-3
Direct tension, T 314:* Failure strain, min 1.0% test temp @ 1.0 mm/min, °C	-24	-30	-36	o	-6	-12	-18	-24	-30	-36	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	-3

ASPHALT PAVEMENT CRACKING

- Premature asphalt cracking on number of municipal roads
- Extensive field and laboratory investigation
- Good QC/QA results
- Asphalt cement properties investigated
- Customized asphalt cement specification in 2015
- New OPSS.MUNI.1101 November 2016
- LU member of OPSS committee

Cold Winter and Early Asphalt Pavement Cracking Observed in Ontar

OPSS.MUNI 1101 November 2016

Restrictions on PPA and other additives

PGAC shall not contain more than 0.3% polyphosphoric acid (PPA)

The asphalt cement shall not contain any of the following additives added for PGAC modification: atactic polypropylene; carbon black; polyisobutylene; polyisoprene; natural rubber; alkaline bases; insoluble particulates or fibres; salts of iron, copper, manganese and/or cobalt; silicates; styrene-butadiene rubber (random copolymer latex); synthetic waxes (paraffin waxes, naphthenic waxes); synthetic and saturated oils (including but not limited to the following: vegetable oils or modified vegetable oils; paraffin oils, polyalphaolefins (PAO), **lube oils, and re-refined lube oils; waste oils (including but not limited to the following: cracked residues, re-refined high vacuum distillate oils; tall oils, vacuum tower asphalt extenders; waste cooking oils, waste engine oils, waste engine oil residues). Asphalt cement supplier shall declare in writing that they have not added the PGAC additives listed above.**

ASPHALT CEMENT TESTING

Additional tests

- Ash test
- Double Edge Notched Test (DENT)
- Extended Bending Beam Rheometer (exBBR) test

Multiple Stress Creep Recovery (MSCR) test

LS-227 Determination of Ash Content

The Ash test is used to control the presence of inorganic materials which will not burn off (and hence leave an ash content) in asphalt cement binders.

- LS-299 Determining Asphalt Cement's Resistance to Ductile Failure Using Double Edge Notched Tension (DENT)
- DENT is used to better reflect fatigue cracking properties at intermediate temperatures. PAV residue is poured into rectangular moulds that are notched on two sides. The samples are pulled after conditioning at an intermediate temperature. This test is based on fracture mechanics principles.

EXTENDED BBR

- LS-308 Determination of Performance Grade of Physically Aged Asphalt Cement Using Extended Bending Beam Rheometer (BBR) Method
 - Low Temperature Limiting Grade (LTLG)
 - Grade Loss
- BBR is used to evaluate the cracking properties of asphalt cement binders at low temperatures. PAV residue is moulded into a thin beam. The flexural creep stiffness and the rate of deflection are measured at low temperatures. Beams are conditioned for 1 hour.
- Extended BBR test is used to measure low temperature PG properties after the beam has been conditioned at low temperatures for 72 hours (3 days).

FAA SPECIFICATION

- FAA AC 150/5370-10G
- P-401 asphalt mix
- PGAC grade
- Polymer modification allowed
- Grade bumping for airport pavements
- PG Plus testing required
- PG selection based on tire pressure, loading and speed
 - LTPPBind software climate, traffic loading and speed, reliability

PG Plus – includes

- Elastic recovery
- Ductility
- Toughness and Tenacity

Research

- Premature cracking observed as early as 3 years on airfield HMA pavements
- Top down cracking, typically shallow
- Aging loss of flexibility and ductility
- The main cause of premature top down fatigue cracking is from the binder rheological properties

Very advanced asphalt paving specification

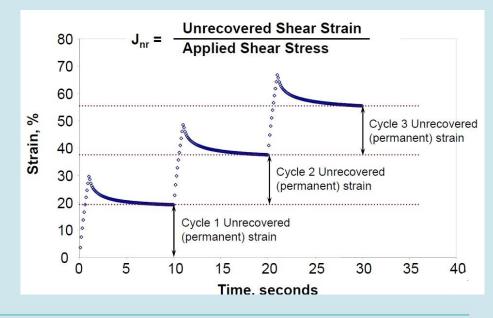
- Marshall mixes
- Polymer modified PG 70-22, 76-22, 82-22 from designated sources
- PG Plus required

- M320 works well for neat binders, for modified binders non-linear testing is required
- The present test methods for AC grading do not adequately characterize rutting or polymer modification of asphalts (PMA)
- The current PG system (AASHTO M-320) is blind to modification and requires PG plus tests such as Elastic Recovery to characterize PMA binders
- Multiple Stress Creep Recovery (MSCR)
 - FHWA, AI Technical Advisory Committee, Asphalt Binder ETG

- USA FHWA and some states
- MSCR to replace PG Plus testing no more elastic recovery or ductility or tenacity testing
- Canada no uniform approach
- Various grades of PGAC
- No PG Plus or elastic recovery required
- Generally, MSCR not required

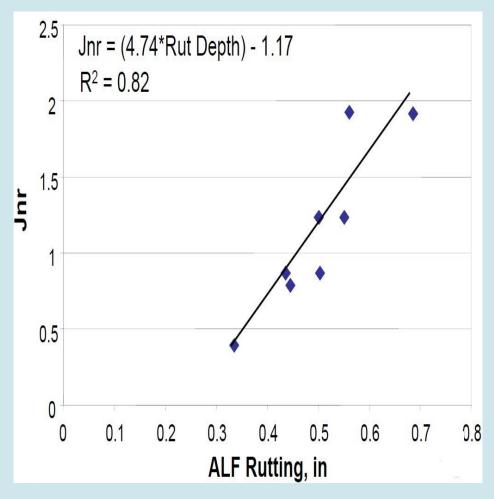
AASHTO T 350-14 – Standard Method for Multiple Creep Recovery (MSCR) Test of Asphalt Binder Using Dynamic Shear Rheometer (DSR)

AASHTO M 332-14 Standard - Standard Specification for Performance-Graded Asphalt Binder Using MSCR



- Uses Dynamic Shear Rheometer (DSR)
- Runs the sample 10 times. Load and relax.
- J_{nr3.2} Nonrecoverable creep compliance for 10 cycles at a creep stress of 3.2 kPa
- J_{nr3.2} S<4.5, H<2, V<1, E< 0.5
- Average Recovery at a creep stress of 3.2 kPa

- Creep and recovery testing of the binder at different stress levels is needed to describe binder properties in non-linear range
- J_{nrDiff} Nonrecoverable creep compliance for 10 cycles at a creep stress of 3.2 kPa
- Required to be < 75%</p>



J_{rn3.2} correlates well with observed rutting J_{nr3.2} works with modified and nonmodified binders

September 21, 2017

EXAMPLE OF MSCR SPECIFICATION IN ONTARIO

- Additional asphalt cement testing
 Ash test
 - MSCR
- J_{nrdiff} should be not more than 75%
 - Requirement temporarily suspended

Property and Attributes (Unit)	Test Method	Results Reported Rounded to the Nearest	Acceptance Criteria	Rejectable
Ash Content, % by mass of residue (%)	LS-227	0.1	≤ 0.6	>0.6
Non-recoverable creep compliance at 3.2 kPa (Jnr-3.2) (kPa-1) when PGAC 58S- 28 is specified	Multiple Stress Creep and Recovery (MSCR) testing according to AASHTO T	0.01	≤ 4.5	> 4.5
Non-recoverable creep compliance at 3.2 kPa, (Jnr-3.2) (kPa-1) when PGAC 58H- 28 is specified	350 testing conducted at a temperature of 58 °C	0.01	≤ 2.0	> 2.0
Non-recoverable creep compliance at 3.2 kPa (Jnr-3.2) (kPa-1) when PGAC 58V- 28 is specified	\bigcirc	0.01	≤ 1.0	> 1.0
Non-recoverable creep compliance at 3.2 kPa (Jnr-3.2) (kPa-1) when PGAC 58E- 28 is specified		0.01	≤ 0.5	> 0.5
Average percent recovery at 3.2 kPa (R3.2) (%)		0.1	> the lesser of [(29.371) (Jnr- 3.2) ^{-0.2633}] or 55	≤ the lesser of [(29.371) (Jnr-3.2) [*] ^{0.2633} -10] or 45
Percent difference in non-recoverable creep compliance between 0.1 kPa and 3.2 kPa, Jurdiff. (%)		0.1	Testing car	N/A ried out only for tion purpose

EXAMAPLE OF MSCR SPECIFICATION IN ONTARIO

Asphalt Cement MSCR Guidelines

Guidelines for	Table 800-3 Selection of <u>PGAC</u> Graded Usi	ng MSCR Test
Road Type	Recommended PGAC Grade Using MSCR Test	Optional Grade Increase (Note 1)
Urban Freeway	58V-28	N/A
Rural Freeway Urban Arterial	58H-28	58V-28
Rural Arterial Urban Collector	Consider specifying 58H-28 if truck traffic is greater than 20% of AADT	58V-28
Rural Collector Rural Local Urban/Suburban Collector	58S-28	58-28 or 58V-28
Toll Plaza Port Facility Dedicated <u>Transitways</u> Truck Marshalling Yards (standing traffic)	58E-28	N/A
courses, i.e. top 80 1. Consideration should roadways which exp	nat <u>MSCR</u> graded <u>PGAC</u> is used mm to 100 mm of hot mix . d be given to an increase in the h erience a high percentage of Tru equent stops and starts, and hist	high temperature traffic level for cks or bus traffic at slow

September 21, 2017

rutting.

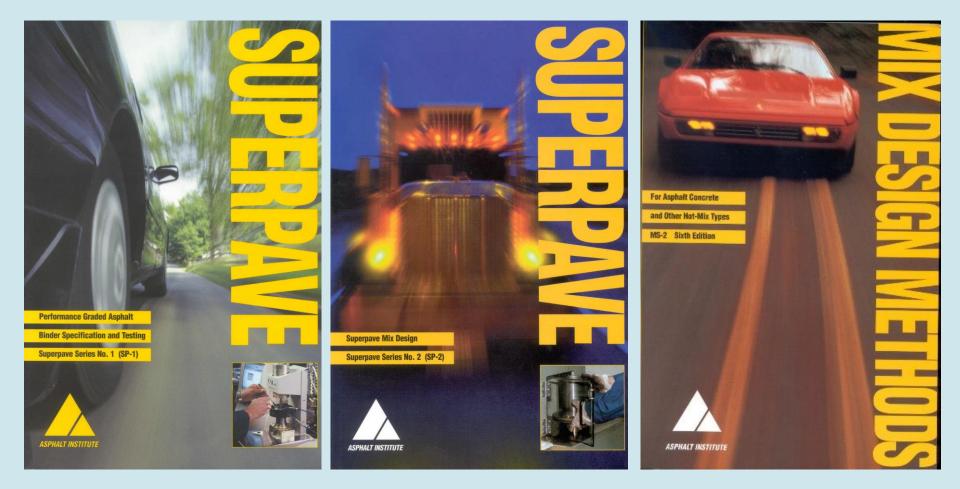
1	- PG Gra <mark>→</mark> 1		Achur	DEN 🔻	eBBR I 🔻	eBBR 🔻	eBBR (🔽	MSCR 🔻	MSCR 💌	lor Da	R29 Hi 🔻	R29 Lc 🔻	- Supplier -	Notes 🔻	- Minimı ▼		lerDiff -		- Final M-	Final AC Grac 🔻
2	58-28	PGTy	0.0	8.4	-25.0	-29.3	-4.3	2.16	2.3	Jiir, D.▼ 14	Yes	Yes	Supplier	Notes	24	N N	Y III	S		
3	58-28		0.04	8.0	-25.1	-30.0	-4.9	3.20	1.3	14	Yes	Yes			24	N	Y	S		
4	58-28		0.12	10.4	-26.1	-28.2	-2.1	3.51	1.0	10	Yes	Yes			21	N	Y	S		
5	58-28		0.05	10.4	-26.0	-29.4	-3.4	2.85	1.3	10	Yes	Yes			22	N	Y	s		
6	58-28		0.07	10.2	-26.1	-29.8	-3.7	3.57	0.9	11	Yes	Yes			21	N	Y	s		
7	64-28		0.1	12.2	-27.0	-30.7	-3.7	0.47	50.1	31	Yes	Yes			36	Y	Y	E	E	64-28
8	64-28	-28Y	0.1	16.8	-31.1	-34.2	-3.1	0.80	56.6	51	Yes	Yes			31	Y	Y	v	v	64-28
9	64-28	201	0.0	12.7	-26.6	-29.9	-3.3	0.56	44.4	53	Yes	Yes			34	Y	Y	v	v	64-28
10	64-28		0.1	9.7	-25.8	-29.8	-4.0	0.44	49.6	32	Yes	Yes			36	Y	Y	E	E	64-28
11	64-28		0.09	29.4	-30.3	-33.1	-2.8	0.48	73.9	31	No	Yes		Failed RTFO G*/Sin	36	Y	Y	E	E	
12	64-28	-28Y	0.1	12.3				1.74	15.3	20	No	Yes		Failed Original G*/Sin, RTFO G*/Sin	25	N	Y	н		
13	64-28		0.09	29.4	-30.3	-33.1	-2.8	0.48	73.9	31	No	Yes		Failed RTFO G*/Sin	36	Y	Y	E	E	
14	64-28	-28MD	0.0	12.1	-27.3	-31.1	-3.8	0.35	66.5	59	Yes	Yes			39	Y	Y	E	E	64-28
15	64-28		0.2					0.97	36.9	19	Yes	Yes			30	N	Y	V		
16	64-28	PMA	0.2					0.48	58.1	174	Yes	Yes			36	Y	N	E		
17	64-28	PMA	0.1					0.46	58.4	67	Yes	Yes			36	Y	Y	E	E	64-28
18	64-28	PMA	0.0					0.43	59.6	62	Yes	Yes			37	Y	Y	E	E	64-28
19	64-28	PMA	0.0					0.61	44.1	51	Yes	Yes			33	Y	Y	V	v	64-28
20	64-28	PMA	0.3					1.01	35.5	39	Yes	Yes			29	Y	Y	н	н	64-28
21	64-28	PMA	0.1					0.66	47.4	48	Yes	Yes			33	Y	Y	V	v	64-28
22	64-28	PMA	0.1					0.47	52.2	67	Yes	Yes			36	Y	Y	E	E	64-28
23	64-28	PMA	0.0					0.67	47.1	41	Yes	Yes			33	Y	Y	V	v	64-28
24	64-28	PMA	0.1					0.48	52.6	47	Yes	Yes			36	Y	Y	E	E	64-28
25	64-28	PMA	0.1					0.46	53.6	52	Yes	Yes			36	Y	Y	E	E	64-28
26	64-28	PMA	0.1					0.77	41.7	41	Yes	Yes			31	Y	Y	V	V	64-28
27	64-28	PMA	0.0					0.64	47.6	62	Yes	Yes			33	Y Y	Y	V	v	64-28
28	64-28 64-28	PMA PMA	0.1					0.88	39.2 40.9	91 77	Yes Yes	Yes			30 31	Y Y	N N	V V		
29 30	64-28 64-28	PMA	0.0					0.83	34.3	57	Yes	Yes Yes			29	Y Y	Y	V	v	64-28
31	64-28	PIVIA	0.0					0.99	40.1	37	Yes	Yes			30	Y Y	r Y	v	v	64-28
32	64-28	FINA	0.0					1.58	8.3	35	Yes	Yes			26	N	Y	н	v	04-20
33	64-28		0.5	6.7	-26.0	-30.6	-4.6	1.38	10.3	33	Yes	Yes			28	N	Y	н		
34	64-28		0.04	9.3	-24.0	-28.7	-4.7	1.20	2.6	14	No	Yes		Failed Original G*/Sin, eBBR LTLG	25	N	Y	н		
35	64-28		0.3	10.3	-24.1	-29.8	-5.7	1.35	20.7	32	Yes	Yes			27	N	Y	н		
36	64-28	XY	0.1	8.8	-24.3	-27.4	-3.1	1.46	3.6	10	Yes	No		Failed PAV BBR	27	N	Y	Н		
37	64-28	XY	0.0	8.2	-22.7	-27.6	-4.9	1.62	3.2	9	Yes	Yes		Failed eBBR LTLG	26	N	Y	н		
38	64-28		0.2	10.0	-25.7	-28.9	-3.2	1.69	4.0	13	Yes	Yes			26	N	Y	н		
39	64-28	EX	0.0	30.2	-32.3	-35.1	-2.8	0.18	84.9	98	Yes	Yes			46	Y	N	E		
40	64-28		0.08	10.0	-25.3	-30.0	-4.7	0.82	37.3	36	Yes	Yes			31	N	Y	V		
41	64-28		0.1	19.0	-31.5	-33.8	-2.3	0.51	62.8	55	Yes	Yes			35	Y	Y	V	v	64-28

UNIVERSITY OF

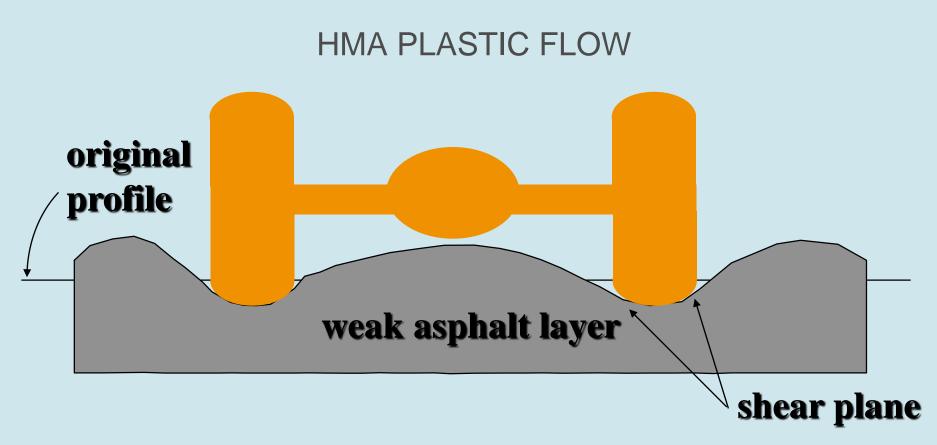
MSCR vs PG GRADE

1	PG Gra <mark>₊1</mark>	PG Ty 🔻	Ash 💌	DEN 💌	eBBR l 💌	eBBR 💌	eBBR (💌	MSCR 🔽	MSCR 💌	Jnr, D 💌	R29 Hi 🔻	R29 Lc 🔻	Supplie 💌	Notes 💌	Minim	Recove 💌	JnrDiff 💌	MSCR (🔻	Final M 🔻	Final AC Grac 💌
42	64-28		0.42	6.9	-27.3	-30.5	-3.2	1.03	13.4	56	Yes	Yes			29	N	Y	н		
43	64-28	P EXR	0.0	16.8	-27.6	-30.5	-2.9	0.84	46.7	65	Yes	Yes			31	Y	Y	V	v	64-28
44	64-28	XY	0.12	15.1	-31.0	-34.0	-3.0	0.88	49.9	59	No	Yes		Failed RTFO G*/Sin	30	Y	Y	V		
45	64-28	XY	0.0	17.7	-31.2	-34.7	-3.5	0.93	50.9	56	No	Yes		Failed Original G*/Sin	30	Y	Y	V		
46	64-28	XY	0.0	18.0	-31.2	-33.4	-2.2	0.68	59.1	265	No	Yes		Failed RTFO G*/Sin	33	Y	N	V		
47	64-28	D Ext	0.13	8.8	-25.9	-30.4	-4.5	3.48	1.2	13	No	Yes		Failed Origianl and RTFO G*/Sin	21	N	Y	S		
48	64-28		0.02	8.6	-24.9	-29.0	-4.1	3.12	1.4	11	No	Yes		Failed Original and RTFO G*/Sin	22	N	Y	S		
49	70-28		0.0	9.1	-24.9	-28.4	-3.5	0.51	43.7	23	Yes	Yes			35	Y	Y	V	v	
50	70-28		0.13	10.4	-25.6	-30.1	-4.5	0.52	44.4	24	Yes	Yes			35	Y	Y	V	v	70-28
51	70-28		0.44	4.1	-25.1	-28.8	-3.7	0.02	90.7	124	Yes	Yes			82	Y	N	E		

Multiple	AASHTO TP 70,	58		
Stress Creep	Extremely Heavy			
Recovery	Traffic "E" Grade			
(MSCR)	J _{nr3.2} , max 0.5 kPa ⁻¹ ,		0.11	0.17
	J _{nrdiff} , max 75 %,		10	13.3
	Average % Recovery, R3.2		52.5	46.8


- Superpave Superior Performing Asphalt Pavements
- Superpave is a product of the Strategic Highway Research Program (SHRP) in the US – a five year US\$150 million program started in 1987
- C-SHRP in Canada

SUPERPAVE – AI MANUALS

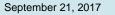


Source: AI

FATIGUE AND LOW TEMPERATURE CRACKING

Source: GAL

September 21, 2017


33

Material Selection

- Asphalt cement
- Mineral aggregate
- Design Aggregate Structure
- Design Binder Content
- Moisture Sensitivity

AGGREGATES

Figure 2.24 Aggregate of Various Shapes and Surface Textures

Source: AI

September 21, 2017

CONSENSUS PROPERTIES

Table 2.2 Supernave Angragate Concensus Preparty Peruirements

Design ESALs ¹ (million)	Angularity	lggregate 7 (Percent), mum	of Fine Aggre	d Void Content gate (Percent), imum	Sand Equivalent (Percent),	Flat and Elongated ³ (Percent),
	≤ 100 mm	> 100 mm	\leq 100 mm	> 100 mm	minimum	maximum
< 0.3	55/-	-/-	-	1	40	ing en jagen
0.3 to< 3	75/-	50/-	40	40	40	10
3 to < 10	85/80 ²	60/-	45	40	45	10
10 to < 30	95/90	80/75	45	40	45	10
≥30	100/100	100/100	45	45	50	10

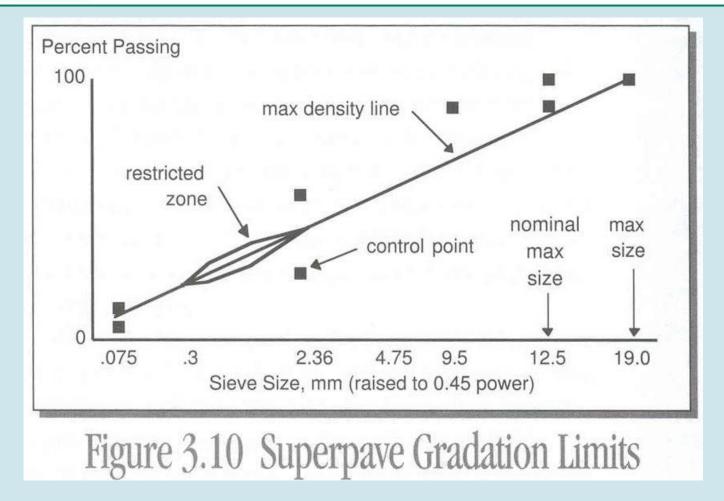
- Design ESALs are the anticipated project traffic level expected on the design lane over a 20 year period. Regardless of the actual design life of the roadway determine the design ESALs for 20 years and choose the appropriate N_{design} level.
- 2. 85/80 denotes that 85% of the coarse aggregate has one fractued face and 80% has two or more fractured faces.
- 3. Criterion based upon a 5:1 maximum-to-minimum ratio.

(If less than 25% of a layer is within 100 mm of the surface, the layer may be considered to be below 100 mm for mixture design purposes.)

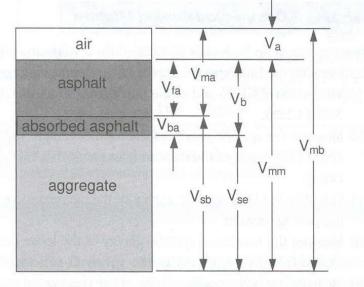
Source: SP2

GRADATION CONTROL POINTS

		Not	ninal Max	imum Agg	gregate Siz	e - Control	Point (Pe	rcent Pass	ing)	
	37.5	mm	25.0	mm	19.0) mm	12.5	mm	9.5 mm	
Sieve Size	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
50.0 mm	100						1.1.			
37.5 mm	90	100	100	120						
25.0 mm		90	90	100	100					(
19.0 mm				90	90	100	100			
12.5 mm		- E - 1			1.1	90	90	100	100	
9.5 mm				1				90	90	100
4.75 mm										90
2.36 mm	15	41	19	45	23	49	28	58	32	67
0.075 mm	0	6	1	7	2	8	2	10	2	10


Source: SP2

SUPERPAVE 12.5 mm NMS



Source: SP2

ASPHALT MIX VOLUMETRICS

- Vma = Volume of voids in mineral aggregate
- V_{mb} = Bulk volume of compacted mix
- V_{mm} = Voidless volume of paving mix
- V_{fa} = Volume of voids filled with asphalt
- Va = Volume of air voids
- Vb = Volume of asphalt
- V_{ba} = Volume of absorbed asphalt
- V_{sb} = Volume of mineral aggregate (by bulk specific gravity)
- V_{se} = Volume of mineral aggregate (by effective specific gravity)

Figure 4.2 Component Diagram of Compacted HMA Specimen

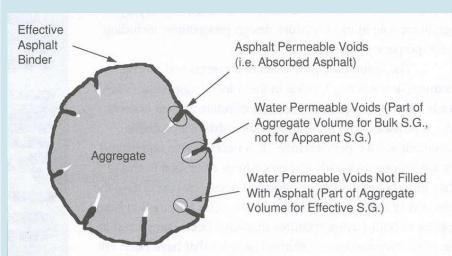


Figure 4.1 Illustrating Bulk, Effective and Apparent Specific Gravity, and Effective Asphalt Binder in Compacted Paving Mixtures

Source: AI

Toronto Pearson

SUPERPAVE GYRATORY COMPACTOR

40

Source: GAL

September 21, 2017

DESIGN REQUIREMENTS

Design ESALs (million)	(% of Th	quired Den eoretical N ecify Gravi		grega	n-the ate (P nimu	2224 0.00	Voids Filled With	Dust-to- Binder			
			131 - 240 132 132	1 1 C 7 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1		al Ma ate Si	2522-10 (July 2011)	Asphalt (Percent)	Ratio		
aase (C	Ninitial	N _{design}	N _{max}	37.5 25.0 19.0		19.0	12.5 9.5			1791 B	
< 0.3	≤ 91.5	(eff. 5)e ((INC.	10-7	den	1 at	8-C	70 - 80	1.66	
0.3 to < 3	≤ 90.5	de Chille	11/181 20		393	064	洞	10.2	65 - 78	CRAW)	
3 to < 10 10 to < 30	≤ 89.0	96.0	≤ 98.0	11.0	12.0	13.0	14.0	15.0	65 - 75	0.6 - 1.2	
≥ 30		salitioned apactor		1.10	Sel 1	Arest.	N. I.			1944	

Design ESALs are the anticipated project traffic level expected on the design lane over a 20-year period. Regardless of the actual design life of the roadway, determine the design ESALs for 20 years, and choose the appropriate N_{design} level.

For 9.5-mm nominal maximum size mixtures, the specified VFA range shall be 73% to 76% for design traffic levels \geq 3 million ESALs.

For 25.0-mm nominal maximum size mixtures, the specified lower limit of the VFA shall be 67% for design traffic levels < 0.3 million ESALs.

For 37.5-mm nominal maximum size mixtures, the specified lower limit of the VFA shall be 64% for all design traffic levels.

If the aggregate gradation passes beneath the boundaries of the aggregate restricted zone, consideration should be given to increasing the dust-to-binder ratio criteria from 0.6 - 1.2 to 0.8 - 1.6

Source: AI

42

Source: GAL

September 21, 2017

CLOSE UP OF SUPERPAVE MIX

Source: OHMPA

September 21, 2017

43

UNIVERSITY OF

- Superpave was introduced in the US in 1994.
- By 2001, US DOT's were using Superpave on 85% of paving projects.
- MTO started using PGAC in 1996, PGAC became mandatory in 1998.
- Ontario first Superpave municipal project was completed in 1996.
- MTO paving projects are 100% Superpave
- Numerous municipalities in Ontario are Superpave

PROBLEMS DURING PAVING

Typical placement problems
 Segregation

- Low compaction
- Fat spots
- Roller marks
- Poor joint construction
 Tender zone

Practical experience is critical

PERFORMANCE PROBLEMS – RAVELING AND CRACKING

Initially observed and then addressed

UNIVERSITY OF

THANK YOU!

QUESTIONS?

luzarowski@golder.com

September 21, 2017

47