

PRECAST CONCRETE PAVEMENT FOR AIRPORTS

SWIFT 2017 - Chris Olidis, P.Eng. With grateful acknowledgement to Shiraz Tayabji

PRESENTATION OUTLINE

- Pavement Damage Structural
- Typical Repair Methods
- Alternative Repair Method Precast Panels
- Background
- Applications
- Design Considerations

PAVEMENT DAMAGE

- Portland cement concrete (PCC) pavement is not indestructible
- PCC damage can include:
 - Slab cracking
 - Shattered slabs
 - Corner breaks
 - Joint spalling

PCC DISTRESS

WHY IS THIS A PROBLEM?

- Loss of serviceability
- Reduced structural performance
- Can generate foreign object damage (FOD)

TRADITIONAL REPAIR METHOD

- Full depth repair and/or slab replacement
- Conventional PCC
 - Similar properties to original PCC
 - Generally good performance
 - Long curing period
- High early PCC
 - Availability to aircraft in a few hours
 - Can have durability issues

- The most common repair technique
- Remove damaged slab

Re-grade and compact substrate

Install load transfer devices

Place and cure concrete

TRADITIONAL SLAB REPLACEMENT

- Repair with conventional concrete:
 - High level of durability and long service life
 - Must achieve minimum strength for traffic availability
 - Minimum 14 days without testing confirmation
- Repair with fast track / high early concrete
 - Can traffic aircraft within hours
 - Reduced durability and service life not uncommon

ALTERNATIVE REPAIR METHOD

Precast Concrete Slabs

PRECAST PAVING BACKGROUND

- Early soviet trials in the 1930/1940's
- Increased North American use since the 1990's
- Used primarily for rapid repair & rehabilitation
- Panels fabricated off-site, transported to project site & installed on a prepared foundation
- Advantageous for night work & short work windows

PRECAST PAVING BACKGROUND

- Highway experience is more extensive
 - Smaller slab sizes easier to work with
- Airfield usage includes:
 - Calgary International Airport
 - Early 1990's 13 slabs
 - LaGuardia Airport

Washington Dulles International Airport

ADVANTAGES OF PRECAST

- Better control of material quality
 - Manufactured under controlled conditions
 - Conventional concrete mixes
 - Slabs are reinforced
 - May be pre-stressed

ADVANTAGES OF PRECAST

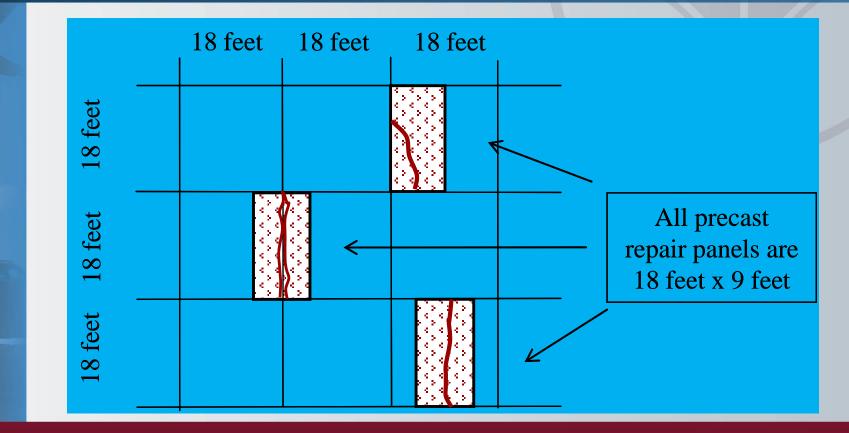
- Fabricated in advance and stored until needed
 - Panel size must be predictable
- Less sensitive to weather conditions
 - Field curing not required hot and cold extremes
 - Rain damage not an issue

DISADVANTAGES OF PRECAST

- Higher cost
 - Significantly higher than conventional cast in place
 - Higher than fast track
- Size and weight of panels
 - Specialized equipment (cranes, etc) required
- Specialized crews for lifting, leveling, and grouting

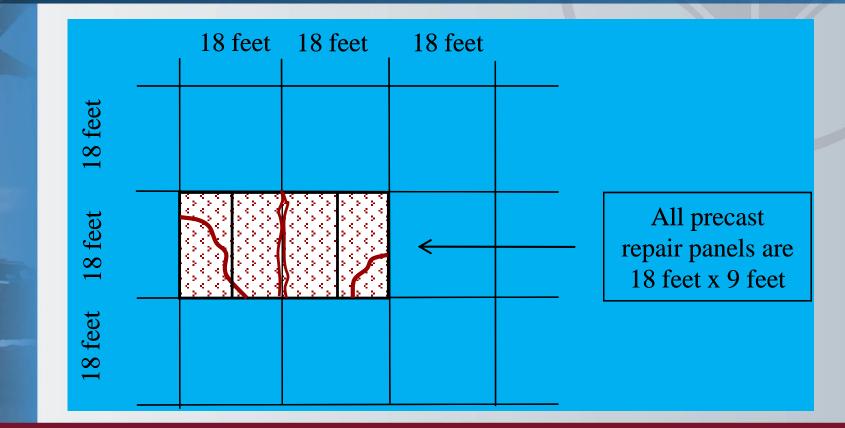
APPLICATIONS

- Single and multiple slab replacement
 - Nominally reinforced panels (common)
 - Pre-stressed panels (typically longer/wider panels)



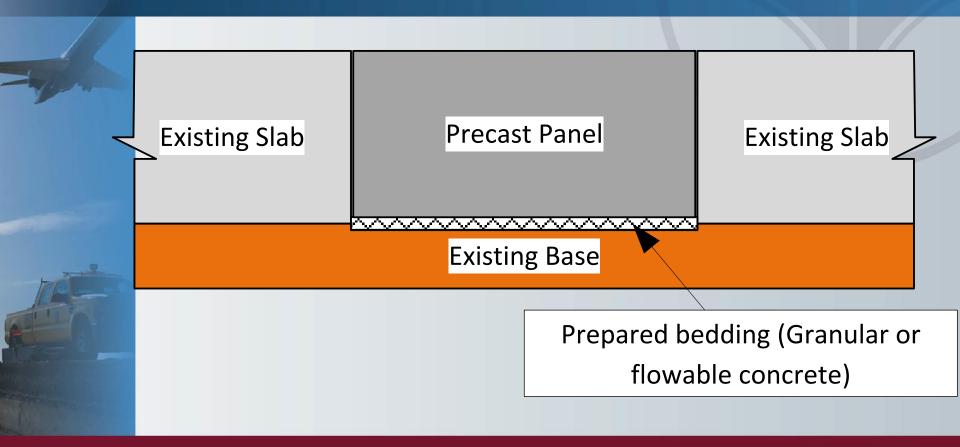
SINGLE SLAB REPLACEMENT

- Replacement of one panel only or partial panel
- Can be considered for a number of applications including
 - replacement of a shattered slab
 - full depth crack repair
 - full depth joint repairs



SINGLE SLAB REPLACEMENT

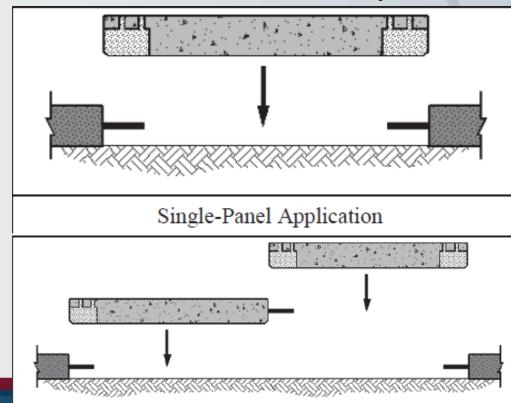
MULTIPLE SLAB REPLACEMENT



PRECAST SYSTEMS

Method	Load transfer	Base support
Fort Miller Super-Slab [®]	Dowels inserted into the existing pavement	Manufactured sand followed by grouting
Michigan	Dowels cast into the precast panel	Flowable fill
URETEK	Fibreglass ties inserted after the precast panel is placed	Grouting using injected polyurethane foam
California Barra Glide system	Dowels 'slide into receiving hole	Flowable grout and leveling plates
Other	Various modifications	Any of the above

BASIC CONCEPT – ON BEDDING




FORT MILLER SYSTEM

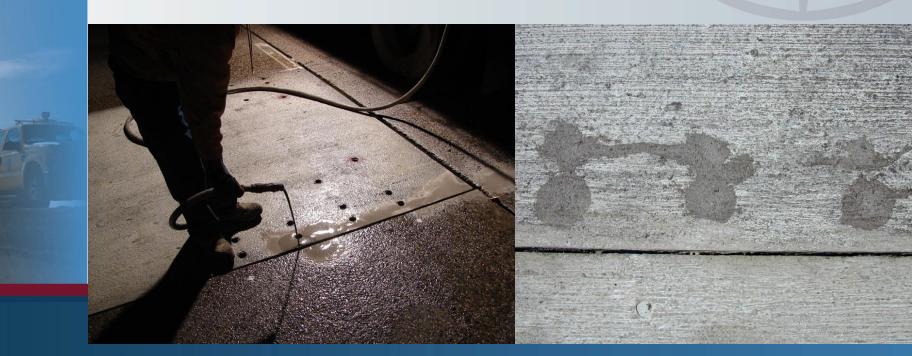
FORT MILLER SYSTEM

Load transfer – bottom slot system

FORT MILLER - BASE PREP

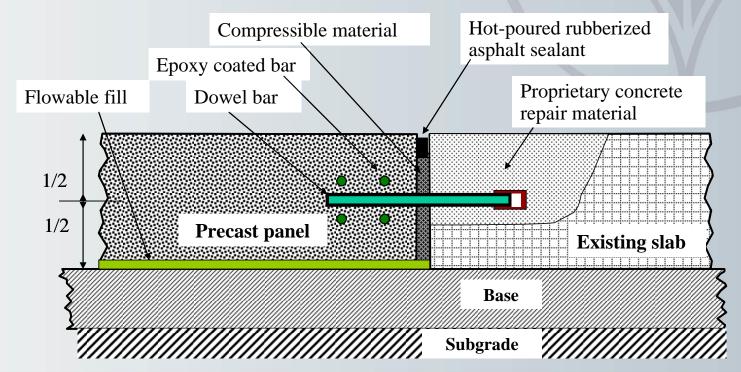
- <u>1st night</u>
- Thin granular layer to set base grade
- Leveled with a screed
- Form release agent to prevent dowel grout bond

FORT MILLER - PLACEMENT


- <u>1st night</u>
- Set panels

FORT MILLER – GROUTING

- <u>2nd night</u>
- Inject flowable bedding grout
- Inject dowel grout


MICHIGAN METHOD

MICHIGAN METHOD

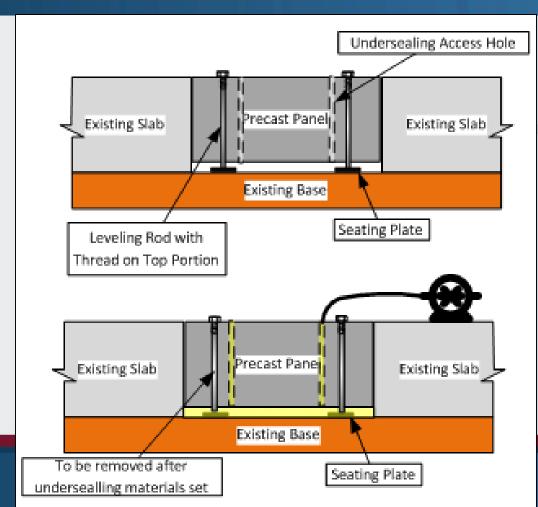
Load transfer – top slot system

MICHIGAN - BASE PREP

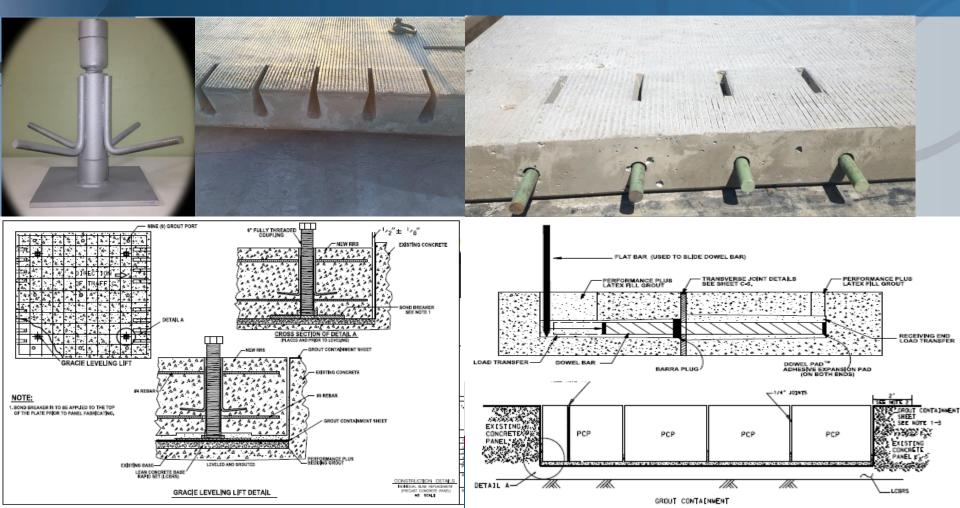
Cementitious self-levelling flowable fill

MICHIGAN - COMPLETED


 Method modified by US Air Force for rapid theater of operation use


URETEK METHOD

- Precast panels with no dowels
- High density polyurethane foam to lift and level slab
- Fibreglass ties to restore load transfer



BASIC CONCEPT – LEVELING BOLTS

BARRA GLIDE LT / GRACIE LIFT

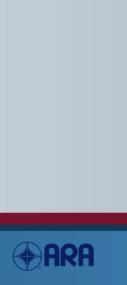
CASE STUDY – LAGUARDIA TAXI D-D

- Opened in 1939
- Congested taxiways
- Flexible pavement has grown thick
- Premature rutting issues

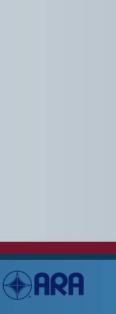
LAGUARDIA - CONSTRUCTION

- Mill existing pavement (100 ft x 50 ft)
- Set steel bearing plates
- Install panels (12.5 ft x 25 ft, 16 in thick)
- Inject grout
- Fill dowel slots
- Joint seal and pavement marking
- Completed over a 36 hour weekend closure

Milling of Existing Asphalt Concrete Pavement (7:00 AM to 2:00PM)



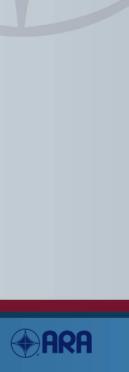
Installation of Steel Bearing Plates (2:00PM to 7:00PM)


Installation of Precast Concrete Panels (7:30PM to 2:30AM)

Installation of Precast Concrete Panels (continued)

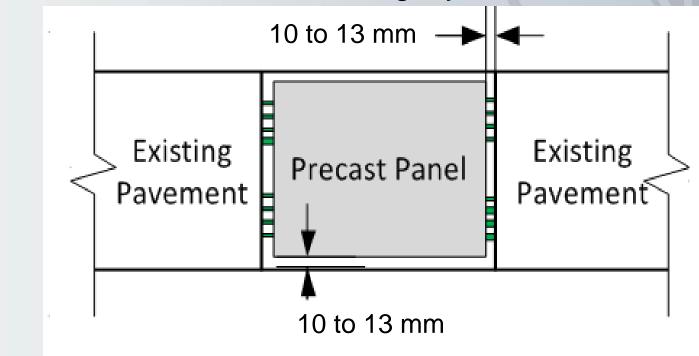
Installation of Cement Grout Bed (3:00 AM to 12:00 PM)

Installation of Cement Grout Bed (continued)



LAGUARDIA

Dowel Slots Filled with Concrete


Joint Sealing, Pavement Markings and Asphalt Paving (12:30 PM to 7:30 PM)

DESIGN CONSIDERATIONS

Precast Panel must be slightly undersized

DESIGN CONSIDERATIONS

- Panel Handling
 - 4 point lift required
 - Lifting hardware left in place must have 70 mm top cover and 50 mm bottom cover after installation
 - PCI provides guidance on lift anchor locations

PANEL WEIGHT

Panel Size (ft)	Panel Thickness (in.)	Panel Weight (lb)	Four-Point Lift Anchor Load (Static) (lb)
()	8	7,000	1,750
12 x 6	10	8,700	2,175
	12	10,400	2,600
	8	13,900	3,500
12 x 12	10	17,300	4,325
	12	20,800	5,200
	8	17,300	4,325
12 x 15	10	21,600	5,400
	12	26,000	6,500
	8	23,100	5,775
12 x 20	10	28,800	7,200
	12	34,600	8,650
	8	41,500	10,375
12 x 36	10	51,900	12,975
	12	62,200	15,550

STATIC LIFTING FLEXURAL STRESSES

	Panel Length (ft.)	Panel Width (ft.)	Panel Thickness (in.)	Maximum Concrete Lifting Stress (psi)	
		12	9	39	
		24	9	154	
	10	36	9	347	
		12	10	35	
As a panel dimension gets longer, pretensioning becomes necessary		12	11	32	
		12	12	29	
		12	9	39	
		24	9	154	
12	10	36	9	347	
	١Z	12	10	35	
		12	11	32	
		12	12	29	
15		12	9	60	
		24	9	154	
	15	36	9	347	
		12	10	54	
DOL swidelings (DOL 2004)		12	11	49	
PCI guidelines (PCI 2004)		12	12	45	

SELECT REFERENCES

ERDC/GSL TR-15-10

Geotechnical and Structures Laboratory

AFRL-RX-TY-TR-2009-4588

PRECAST SLAB LITERATURE REVIEW REPORT: REPAIR OF RIGID AIRFIELD PAVEMENTS USING PRECAST CONCRETE PANELS—A STATE-OF-THE-ART REVIEW

Chris Olidis, D.J. Swan and Athar Saeed Applied Research Associates, Inc. P.O. Box 40128 Tyndall Air Force Base, FL 32403

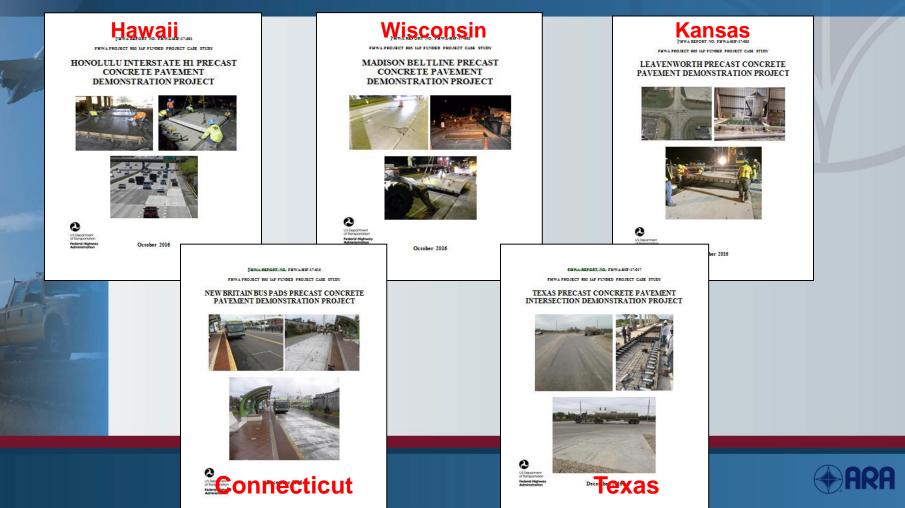
R. Craig Mellerski and Michael I. Hammons Airbase Technologies Division Air Force Research Laboratory 139 Barnes Drive, Suite 2 Tyndall Air Force Base, FL 32403-5323

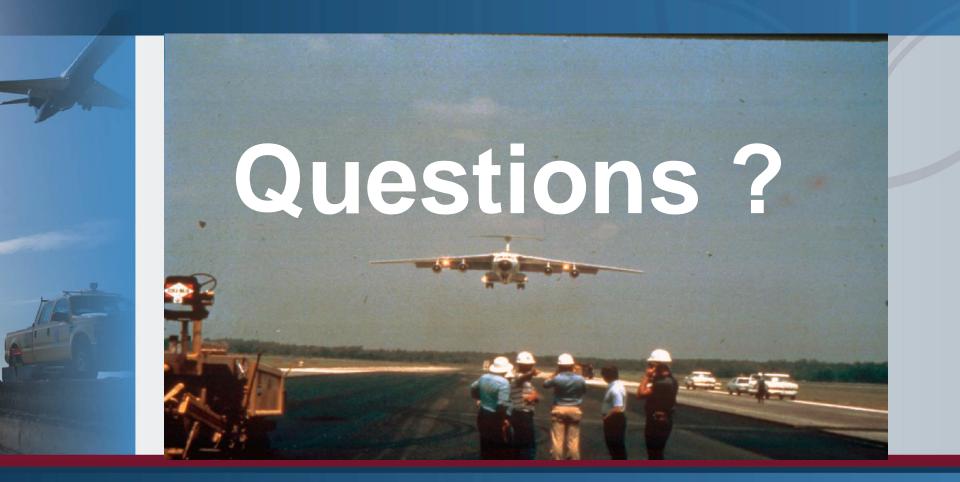
Contract No. FA4819-07-D-0001

June 2010

DISTRIBUTION A: Approved for public release; distribution unlimited.

AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE


Air Force Materiel Command United States Air Force Tyndall Air Force Base, FL 32403-5323


US Army Corps of Engineers® Engineer Research and Development Center	REPO	DRT S2-R05-RR-1
	Precast Concre Pavement	ete
Evaluation of Precast Portland Cement Concrete Panels for Airfield Pavement Repairs	Technology	
Lucy P. Priddy May 2015		
	SHRP2 RENEWAL	RESEARCH
	STRATEGIO HIGHWAY RES Accesseding solidore for righway safey.r	SHRP 2 IEARCH PROGRAM
Approved for public release, distribution is unlimited.	TRANS	PORTATION RESEARCH BOARD

OF THE NATIONAL ACADEMIES

HIGHWAY CASE STUDIES - 2016

