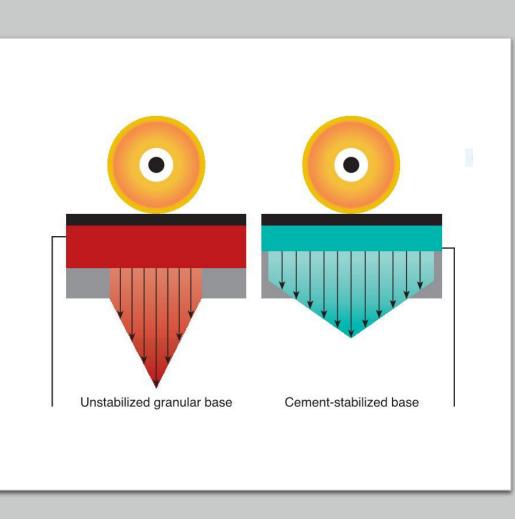
Cement Treated Base in Rigid and Flexible Aircraft Pavements— A Practitioner's Experience

ΗΔΤCΗ

CAPTG Workshop September 12, 2022, Montreal, Quebec George Nowak P. Eng.

Copyright © Hatch 2018. All Rights Reserved.


AGENDA

- 1. Cement Treated Base Typical Properties
- 2. Pros and Cons in Flexible and Rigid Pavement
- 3. Benchmarking at Various Airports
- 4. Recommendations
- 5. Case History 1 Flexible Pavement
- 6. Case History 2 Rigid Pavement
- 7. Key Items to Consider in Design and Construction

CTB Properties compared to Unstabilized Base

- Superior load distribution
- Modulus of Elasticity about 3500 MPa vs. 20900 MPa for granular, so thinner layer
- Stabilized Layer required by FAA for aircraft loading exceeding 45,359 kg (100,000 lbs.)
- Much less permeable and low loss of strength due to high water table or percolation

CTB Guiding Principles of Mix Design

- -CTB isNOTlean Concrete-keep CTB strengths lowess than 5MPa compressive strength at 7 days (2 to 3.5 MPa).
- Compaction is primary goal in successful placement not compressive strength the cement only locks in your compaction.
- -Best results achieved by using well graded granular base gradation. Always think of it as "granular base course" with a small amount of cement added (2% by weight).
- Uniformity of mix and placement is very important use pug mill for mixing and asphalt paver for spreading and keep water content at optimum focompaction.

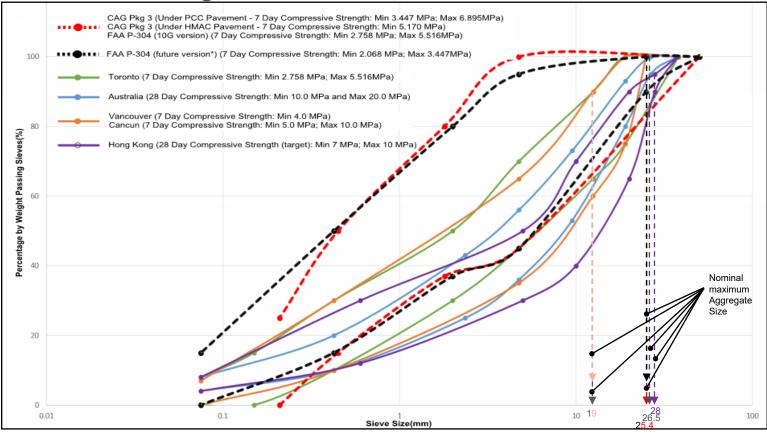
Cement Treated Base in Flexible and Rigid Pavemen

-FlexibleProsand Cons

- Cheaper and faster than asphalt stabilization of layers
- Possible reflective cracking if too strong and in severe climates (shrinkage cracking)
- Enhances rutting performance compared to asphalt stabilization
- Better support for lighting fixtures and other subsurface structures

- -Rigid Prosand Cons
 - PCC Joints perform well into long term
 - Very strong CTB layer increases slab curling stresses
 - Must ensure debonding of CTB and PCC.
 - Provides enhanced load distribution to subsurface piping and other structures

ΗΔΤ


Benchmarking of CTB

Cement Treated Base Course - Key Properties	FAA P-304 (10G)	FAA P-304 (current 10H)	CAG	Toronto	Vancouver	Hong Kong	Australia	Cancun
Cement Type	Site Specific		ASTM C150	Normal Type 10	Normal Type 10	Ordinary BS	GP Cement	Type I Normal
Supplementary Cementitious	Max 6%		Max 6%	None	Type F – 25% Max.	10-25% Max.	N/A	25% max.
Aggregate Type	Granular, crushed/un, recycled PCC		Granular, crushed/un, recycled PCC	Crushed stone or gravel or recycled PCC	Crushed Stone or Gravel 60% crushed faces	100% Crushed Rock only – same as CABC	Crushed Basalt Rock only	Crushed Stone or Gravel 60% crushed faces
Aggregate Gradation mm	A: 50.0 to 0.210	A: 50.0 to 0.075	A: 50.0 to 0.210	38.1 to 0.075	25.0 to 0.075	37.5 to 0.075	37.5 to 0.075	25.0 to 0.075
Aggregate Strength Surface	LA 40% Max		LA 40% Max	LA 40% Max	LA 50% Max	LA 25% Max	LA 25% Max	L 45% Max
Magnesium Sulphate Soundness coarse/fine	15		13	10/13	12/16	5	5 (sodium Sulphate)	12/16
Compressive Strength Minimum 7 day	2.758 MPa	2.068 MPa	3.447 MPa under PCC /5.17MPa under HMAC	4.0MPa	4.0 MPa	N/A	TBD	5.0 MPa
Compressive Strength Maximum 7 Day	5.516 MPa	3.447 MPa	5.516 MPa	N/A	N/A	N/A	TBD	10.0 MPa
Compressive Strength Maximum 28 days	6.895 MPa	N/A	6.895 MPa	6.5 MPa +/- 0.5 MPa	N/A	Target 7.0 to 10.0 MPa	Min. 10.0 MPa and Max. 20.0	N/A
Minimum Compaction Required Mod. Proctor	98% MDD within 2% of optimum		98% MDD within 2% of optimum	97% MDD	97% MDD	100% MDD – same as CABC	97%	97% MDD

Benchmarking of CTB (Cont'd)

Cement Treated Base Course - Key Properties	FAA P-304 (10G)	FAA P-304 (current 10H)	CAG	Toronto	Vancouver	Hong Kong	Australia	Cancun
Watering During Placement	Water fog sprayers		Water fog sprayers	As Required	As Required	As Required + cure until Prime	N/A	Fine water spray as required
Curing Compound under PCC	White Pigment like PCC		White Pigment like PCC	RS-1	SS-1h	Prime Coat Typ. SS-1, SS- 1h	Emulsion	Not Specified
Curing Compound under HMAC		nulsion RS-1	Emulsion RS-1	RS-1	SS-1h	Prime Coat SS-1, SS-1h	Not Specified	SS-1h
Curing Compound Coverage Requirements PCC	0.2 L/m2	0.409 L/m2	0.2 L/m2	1.2 L/m2	1.2 L/m2	0.5 to 1.5 L/m2 trials	0.25l/m2 + same before PCC	Not Specified
Curing Compound Coverage Requirements HMAC	0.7 to 1.4 L/m2		0.7 to 1.4 L/m2	1.2 L/m2	1.2 L/m2	0.5 to 1.5 L m/2 Trials	Not Specified	1.35L/m2
Type of Plant Requirements	Central		Central	Central	Central	Pug Mill	Central	Central
Spreader Requirements	Mechanical		Mechanical	Not Specified	Mechanical	Mechanical	Mechanical	Mechanical
Pre-Cracking Requirements	None	CTB joint offset 600mm from asphalt joint/ no offset for PCC	3.5 x 3.5m	None	None	Post Micro Crackiing 24 hrs	Same as PCC but 600mm offset	3.5 x 3.5 m before/after comp
Compaction Completion and Curing Compound Application	45 min and max 2 hrs plus water before curing compound	Within 2 hrs	45 min and max 2 hrs plus water before curing compound	Curing compound must be on 2 hrs plus water before	Placement within 45 minutes from plant	30 min. from cement to site and 90 min to compaction	60 minutes to final compaction in summer	120 minutes from mixing to full compaction and prime

Benchmarking of CTB

Case History 1 – New Parallel Runway at Cancun International Airport, Mexico

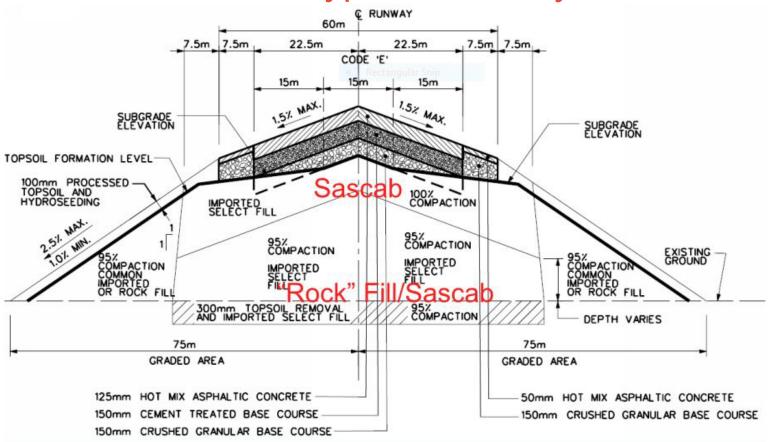
Flexible Pavement and CTB

Cancun New Parallel Runway and Taxiway Bridge

New Parallel Runway-Cancun Mexico

- FAA LEDFAA/FAARFIELD Design
- 2800 m parallel runway used primarily for arrivals
- HMAC over Cement Treated Base
 Course
- Lowest Cost Pavement Structure as compared to asphalt stabilized
- Aggregates in Yucatan are mostly coral limestone – relatively weak. Stabilized to increase strength.
- Runway opened in 2009

Cancun Runway Subgrade Repair (143 sinkholes)



Cancun Pavement Design

- Flexible Design only as per contract, same as existing Runway
- FAA LEDFAA 1.3 and FAARFIELD initial version (2005/6)
- CBR on Repaired Subgrade and "Sascab" fill was maximum allowed: 28.5
- Final Recommended Section:
 - 125 mm HMAC
 - 150 mm Cement Treated Base (100 mm calculated)
 - 150 mm Crushed Granular Base (100 mm calculated)
 - 100% Modified Proctor Compaction (1000 mm below finished surfates 5mm)
 - 95% Modified Proctor Compaction below 1000 mm
 - Expected Service Life (CDF) = 40 years (40 years left on concession agreement)

ΗΔΤCΗ

Cancun Typical Runway Section

Copyright © Hatch 2016. All Rights Reserved.

ΗΔΤCΗ

Inducing Cracks in Cement Treated Base Paving

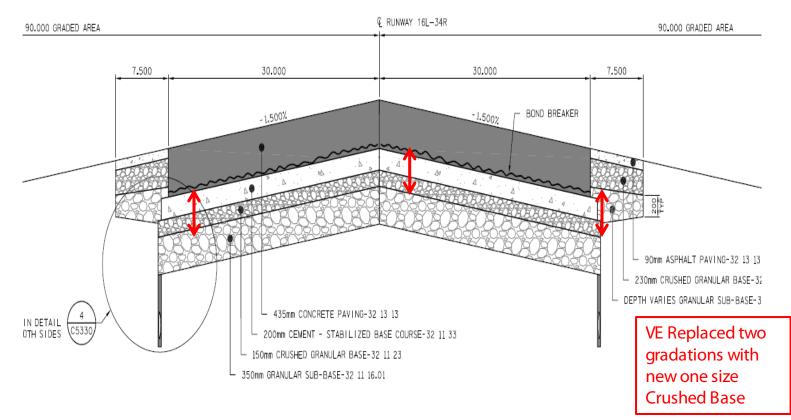
Case History 2 – New Parallel Runway at Calgary International Airport, Canada

Rigid Pavement and CTB

New Calgary International Parallel Runwayll 2014

New Calgary Parallel Runway Data

- 4267 metres long (14,000 feet) longest runway in Canada. CAT III for commercial attraction of Transpacific customers. Calgary is 1084 m above sea level.
- All Rigid Pavement
- Selection of Rigid Pavement during LCCA in Preliminary Design. Rigid was 12% less costly than Flexible Option for 40-year life.
- Followed both FAA and Canadian Transport Canada mandatory requirements to use cement stabilized base under PCC.



Calgary Runway FAA Rigid Pavement Section

FAARFIELD	- Modify and Design Section Ne 💶 🗆 🔀
Section Names NewFlexib~01 NewFlexib30 NewFlexibEdg	RDP2015NewRigid22Des. Life = 20LayerThicknessModulus or RMaterial(mm)(MPa)
NewRigid NewRigid22 NewRigidEdge NewRigidIFP NRigidIowgro	> PCC Surface 436.4 4.71
	P-304 CTB 200.0 3.447.38 P-209 Cr Ag 152.4 324.38
	P-154 UnCr Ag 350.0 128.22
Design Stopped 781.57;	Subgrade k = 22.0 50.62 Total thickness to the top of the subgrade, t = 1, 138.8 mm
Back Help	Life Modify Structure Design Structure

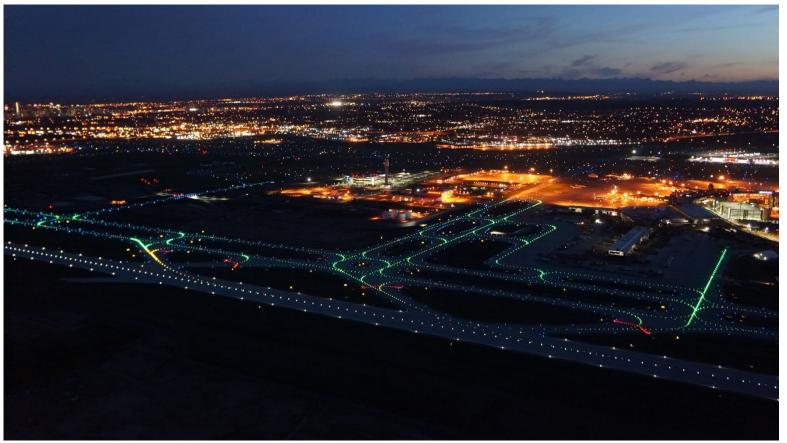
ΗΔΤCΗ

Calgary Pavement Details and Construction

ΗΔΤCΗ

Calgary Paving in 2013

Calgary RWY Dowels and TDZ Can Installation on (



Calgary Paving TrialsGood from the Start

Calgary Runway All CAT III Lighting Turned On

Recommended Properties of CTB

- -Use a dense welgraded aggregate envelope "banana" curve
- -Limit 7-day compressive strength to 5 MPa (2 to 3.5 MPa)
- Induce joints if reflective cracking/excessive shrinkage an issue or strengths increasing significantly
- -Obtain 98% modified proctor compaction as soon as possible-the cement is NOT your compaction agent.
- Apply adequate curing compound as soon as possible and re-spray to provide good prime coat or MAC paving orde-bonding coverage prior to PCC paving

ΗΔΤCΗ