The Journey to Net Zero Electrification, Hydrogen, and Data Science

Justin Gammage, PhD, PEng

DIRECTOR OF PARTNERSHIPS

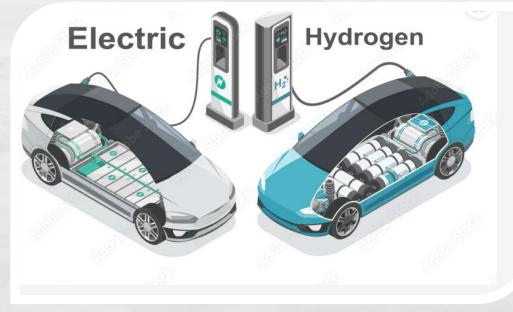
Aviation Events Group \ge

Technology Deployment Timelines

(Commercial Deployment at Scale)

Digitization, Data Science, and Software

The Great Debate


The winner today is ... BOTH

Battery Electric

- Light Duty
- Short Haul Freight
- Tugs / Tows

Hydrogen Fuel Cell

- Heavy-Duty Vocational Vehicle
- Long Haul Freight
- Continuous operation under load

Example Illustration

400 HP ~ 300 kW Powered Unit in Snow Event

12-HOUR SNOW EVENT

	Time (hrs)	Load %	Power (kW)	Energy (kW/h)
р	0.5	0.0	0.0	0.0
e"	1.0	0.0	0.0	0.0
a	0.5	25.0	75.0	37.5
a	1.0	0.0	0.0	0.0
n	1.0	50.0	150.0	150.0
er	3.0	90.0	270.0	810.0
er	5.0	45.0	135.0	675.0

Start Up Stand By at "Home" Movement to / from Air Traffic Area Stand by Air Traffic Area Manouvering During Operation Operation Air Traffic Area High Power Operation Air Traffic Area Medium Power

1672.5

Battery Electric Requirements

1700 kWh Energy Required

Charge Time ~ 1 hour 40 minutes* with a 1MW DC Fast Charger at end of 12-hour shift

or

 4 charges of 26 minutes each with 1MW charger every 3 hours

*Charge times are rough approximations due to loses from chargers and cabling.

Hydrogen Fuel Cell Electric

- 1 kg of Hydrogen ~ 33 kWh of Energy
- 52 Kg of Hydrogen required for 1700 kWh of Energy
- Fast Flow Fuelling ~ 4 kg/min*
- Hydrogen Refill for 1700 kWh less than 25 min

*NREL/DOE, **Honda**, Air Liquid June 2022

Other Alternatives

Bio Fuels—In Use Today

Hydrogen Combustion—In development with long term durability questions being assessed.

SWIFT

Digitization, Data Science, Software

A Largely Untapped Opportunity for Airfield Sustainability Initiatives

Digital Twins

- Planning (Snow Plans, Routing)
- Training Simulators
- Evaluation on New Tech on Airfield (Energy Use Simulations)

Data Science, Machine Learning, and Operational AI

Operational Analysis and Insights

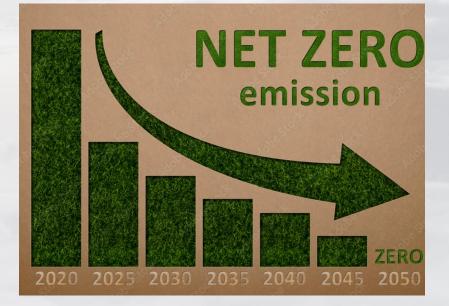
Identification of good and bad trends in energy consumption

Computer Vision and Sensor Fusion

Multi-tasking, error reduction, enabling multi-purposing of vehicles

Autonomous Operation and Operational Intelligence

- Real-time decision-making support
- Redundancy and hold time reduction
- Integration of multiple data sources (weather, traffic volume...)



The Journey Will Require:

Multi-Disciplinary Skills

Multiple Technologies

Digitization and Software

Thank you SWIFT 2023

UNIVERSITY OF MIAMI FROST INSTITUTE for DATA SCIENCE & COMPUTING

Justin Gammage, PhD, PEng

DIRECTOR OF PARTNERSHIPS 905.396.6968 • jxg5613@miami.edu

1320 S Dixie Hwy, Suite 600 Coral Gables, FL 33146