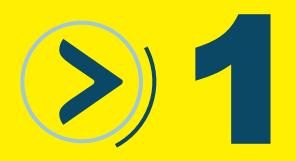
CAPTG WORKSHOP PM UTILIZATION OF RECYCLED MATERIALS IN AIRPORT PAVEMENTS

JEAN-MARTIN CROTEAU, P.Eng. Technical Director, Colas Canada Inc.


5000

SUMMARY

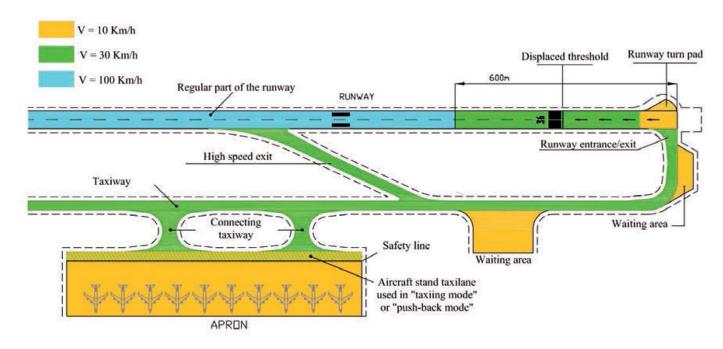
- **1** Airport vs. road pavements
- **2** Types of airport pavements
- **3** Functional requirements
- **4** Paving materials for airports
- **5** Traditional recycling
- **6** Performance-based recycling
- 7 Closing the loop

Airport vs. road pavements

AIRPORT VS. ROAD PAVEMENT DIFFERENCES

Table 2 - Characteristics and particular features of airport pavements

Road pavements	Airport pavements
Loads	applied
 loads are applied in a way that presents very low lateral dis- persal (which could cause rutting) 	 on runways, traffic is dispersed (only the central third of the surface is occupied) and landing gear configurations vary from one aircraft to another. On taxiways, this dispersal is less marked
● a large number of movements (up to 50,000 per day) of rel- atively light loads (42 t total weight, 4.2 t maximum wheel load), engendering fatigue mainly due to the high frequency of movements each causing small stresses	 a very small number of movements (from very few to more than 100 per day) of differing loads (up to 550 t or more total weight, 45 t for a twin-wheel undercarriage and 115 t for a bogy), causing fatigue mainly due to infrequent movements each causing large stresses
• tyre pressures must not exceed 0.8 MPa (8 bars)	• tyre pressures may attain 1.7 MPa (17 bars) for certain air- craft
 the most aggressive loads are applied at low speeds (less than 90 km/h) 	 speeds are highly variable : very low speeds, which can cause runtting phenomena very high speeds during takeoff and landing (over 300 km/h)
Particula	r features
• particular stresses which require good tyre contact to the pavement in order to provide the best possible roadholding and satisfactory braking performance for vehicles using it	 geometrical and environmental conditions which expose pavement mixtures over long periods to the action of rain, sun etc.
 surface evenness (with no surface defects) is largely relat- ed to passenger comfort 	 surface evenness is largely related to aircraft safety when taxiing at high speeds
 roughness develops essentially as a result of a polishing phenomenon affecting aggregates over time 	 roughness develops progressively as a result of rubber deposits from tyres
 traffic has sometimes to be diverted or stopped in the event of road works 	 the operating and safety constraints on traffic make it very difficult for traffic to be stopped or reduced when maintenance or renovation work has to be carried out



Airport pavement types

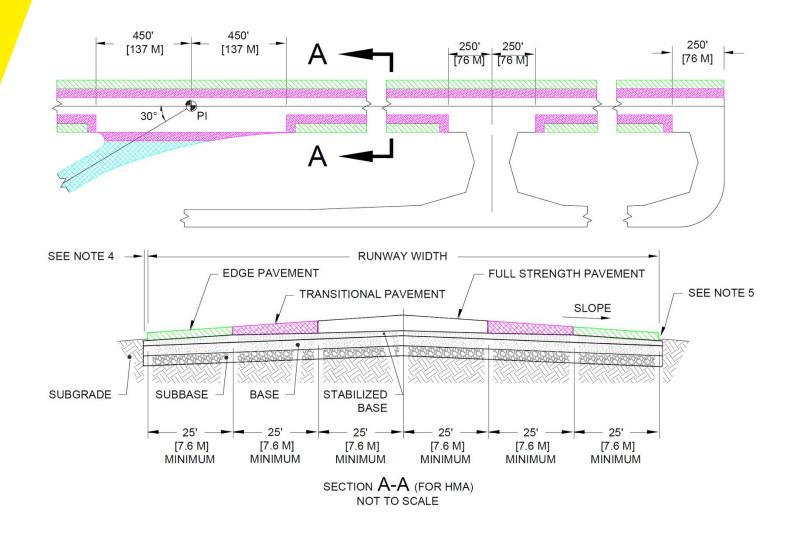

AIRPORT PAVEMENT TYPES RELATED TO SPEED

Figure 5 : map between the three families of sections taken into consideration for design purposes and the various usual airfield infrastructures

AIRPORT PAVEMENT TYPES RELATED TO OCCUPANCY

Ev	bject: Airport Pavement Design and Date: 67/2021 AC No. 150/5320 aluation Initiated By: AAS-100 Change:
1	Purpose. This advisory circular (AC) provides guidance to the public on the design and evaluation of pavements used by aircraft at civil ainports. For reporting of pavem strength. ee AC 1050353-5D, Standardteel Method of Reporting Arport Paven Strength. – PCR.
2	Cancellation. This AC cancels AC 150/5320-6F, <i>Airport Pavement Design and Evaluation</i> , dat November 10, 2016.
3	Applicability. This AC does not constitute a regulation, and is not legally binding in its own rigil will not be relied upon as a separate basis by the FAA for affirmative enforcemen- action or other administrative penalty. Conformity with this AC is voluntary, and nonconformity will not affect rights and obligations under existing statutes and regulations, except for the poiscisc described in subpurgnths 2 and 3 below:
	 The standards and processes contained in this AC are specifications the FAA considers essential for the reporting of pavement strength. Use of these standards and guidelines is mandatory for projects funded under Federal grant assistance programs, including the Airport Improvement Program.
	(AIP). See Grant Assurance #34. 3. This AC is mandatory, as required by regulation, for projects funded by the Passenger Facility Charge program. See PFC Assurance #9. Xett. This AC grantiduce no hot ext the section assures of granting the
	Note: This AC provides one, but not the only, acceptable means of meeting the requirements of 14 CFR Part 139, <i>Certification of Airports</i> .
4	Principal Changes.
	 Reformatted to comply with <u>FAA Order 1320.46</u>, FAA Advisory Circular S
4	Principal Changes. This AC contains the following principal changes:

Outer edge design using departure weights and 1% estimated frequency. »

of a 60 m runway.

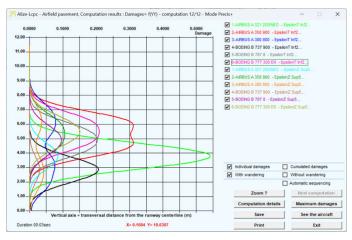
NOTES

»

Functional requirements

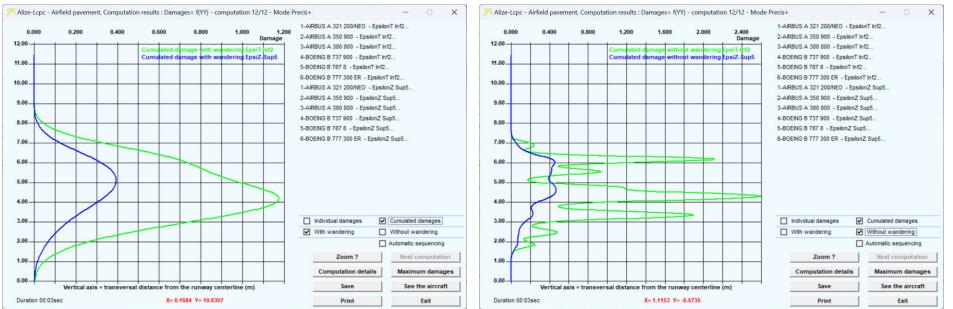
PAVEMENT FUNCTIONALITIES FAILURE MODES

Table 3 – Assessment of aggression levels and surface quality characteristics of a pavement

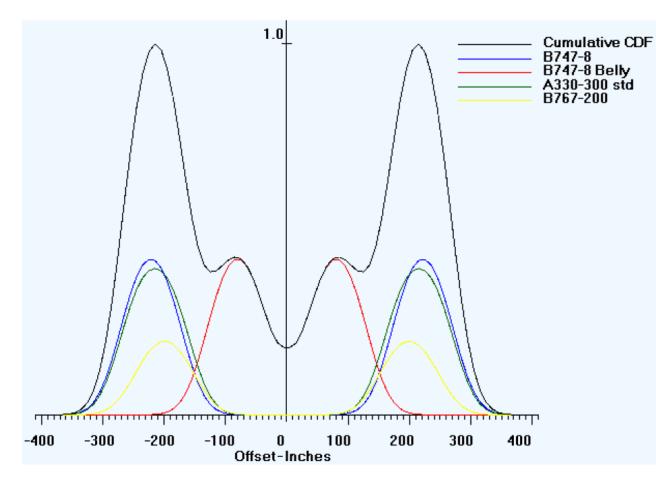

		Shearing	Rutting	Punching	Durability	Friction
Parking ar	ea	++	+++	+++	++	++
	Main part	+	+	+	++	+++
Pupwovo	Turning area	+++	++	+	+++	++
Runways	Exit	+++	+	+	++	+++
	Threshold (*)	+++	+	++	+++	+++
Taxiways	Main part	+	++	+	++	++
Taxiways	Intersections	++	++	++	+++	++
Apron or holding area		+	+++	+++	++	++

(*) including touch-down area

+: Low level ++: Medium level +++:High level


PAVEMENT FUNCTIONALITIES WANDERING

Pavement section	Standard deviation S _{bal} (in m)
High-speed sections	0.75
Moderate-speed sections	0.5
Aprons and low-speed sections	0


Table 5: standard deviations according to the type of section

PAVEMENT FUNCTIONALITIES WANDERING

Figure H-1. CDF Contribution for Aircraft Mix

of Tr Fede	Department ansportation eral Aviation inistration	Advisory Circular		
	ect: Airport Pavement Design and uation	Date: 6/7/2021 Initiated By: AAS-100	AC No: 150/5320-6G Change:	
1	Purpose.			
	This advisory circular (AC) pr evaluation of pavements used strength, see AC 150/5335-5E Strength – PCR.	by aircraft at civil airports.	For reporting of pavement	
2	Cancellation.			
	This AC cancels AC 150/5320 November 10, 2016.	0-6F, Airport Pavement De	ign and Evaluation, dated	
3	Applicability. This AC does not constitute a will not be relied upon as a se action or other administrative nonconformity will not affect regulations, except for the pro-	parate basis by the FAA for penalty. Conformity with the rights and obligations unde jects described in subparage	affirmative enforcement is AC is voluntary, and r existing statutes and raphs 2 and 3 below:	
	 The standards and process considers essential for the 	es contained in this AC are reporting of pavement stree		
	 Use of these standards and Federal grant assistance pr (AIP). See Grant Assurance 	rograms, including the Airp		
	 This AC is mandatory, as Passenger Facility Charge 	required by regulation, for program. See PFC Assurat		
	Note: This AC provides one, requirements of 14 CFR Part			
4	Principal Changes. This AC contains the followir	g principal changes:		
	1. Reformatted to comply	with FAA Order 1320.46, J	AA Advisory Circular System.	

NOTE:

» FAA AC 150/5320-6G specify wander pattern standard deviation of 30.5 inches, (0.775 m).

PAVEMENT FUNCTIONALITIES STIFFNESS MODULUS

Pavement section	Speed of movement in kph to be taken into consideration in the design calculations
High-speed sections	100
Moderate-speed sections	30
Aprons and low-speed sections	10*

* a fictive values used in the calculation. See below « Special case of low-speed sections and aprons »

f(Hz)

1:

Rational design method for flexible airfield pavements

Technical guide

	and provide the second	Remove												
Standard	material library :	according	to NF P	98-086 (normat	tive anne	xF)								
Personal	library : c:\users	CROTEAJ	ll e	nts\Alize-Lcpc	my files	Librarie	s\matuse	r.lib						
				Bituminous n	naterials					Variation	s E(10Hz)	= f(tem)	perature)	
status	name	E (MPA)	Nu	Epsi6 (10°C)	-1/b	SN	Sh (m)	Kc	T -10	TO°C	T 10 °C	T 20 °C	T 30 °C	T 40 °C
system	eb-bbsg3	9310	0.35	100	5	0.25	stdard	1.1	16000	13500	9310	4690	1800	1000
system	eb-bbme1	11970	0.35	100	5	0.25	stdard	1.1	17300	15400	11970	6030	3000	1900
system	eb-bbme2	14630	0.35	100	5	0.25	stdard	1.1	19500	18200	14630	7370	3800	2300
system	eb-bbme3	14630	0.35	100	5	0.25	stdard	1.1	19500	18200	14630	7370	3800	2300
system	bbm	7315	0.35	1	1	1	stdard	1.1	14800	12000	7315	3685	1300	1000
system	bbtm	4200	0.35	1	1	1	stdard	1.1	8500	7000	4200	1800	1000	800
system	bbdr	4200	0.35	1	1	1	stdard	1.1	8500	7000	4200	1800	1000	800
system	acr	7315	0.35	1	1	1	stdard	1.1	14800	12000	7315	3685	1300	1000
system	eb-gb2	11880	0.35	80	5	0.3	stdard	1.3	22800	18300	11880	6120	2700	1000
system	eb-gb3	11880	0.35	90	5	0.3	stdard	1.3	22800	18300	11880	6120	2700	1000
system	eb-gb4	14300	0.35	100	5	0.3	stdard	1.3	25000	20000	14300	7700	3500	1200
system	eb-eme1	16940	0.35	100	5	0.3	stdard	1	30000	24000	16940	11060	6000	3000
SHOP	en-emez	10940	0.00	430	5	0.25	stdard	1	30000	24000	16940	11060	6000	3000
user	SP12.5	5107	0.350	141.0	5.77	0.28	stdard	1.000	16514	10570	5107	1581		
user	SP20	3201	0.350	206.0	6.48	0.23	stdard	1.000	12803	7806	3201	1005		
user	Detonexortes		0.350	204.0	6.23	0.19	stdard	1.000	15396	12158	7256	3283	1111	
user	Betoflex0/14V	7578	0.350	165.0	5.16	0.23	stdard	1.000	18111	12988	7578	3458	1174	
user	Betoflex0/14H	5507	0.350	230.0	6.55	0.20	stdard	1.000	16914	10970	5507	1981	591	
user	Betoflex0/10V	7872	0.350	168.0	4.636	0.34	stdard	1.000		13000	7872	3500		

Personal library : c:\users\CROTEAJ ...\... ents\Alize-Lcpc my files\Libraries\matuser.lib

				Bituminous m	naterials				1	Variation	s E(10Hz)	= f(temp	erature)	
status	name	E (MPA)	Nu	Epsi6 (10°C)	-1/b	SN	Sh (m)	Kc	T -10	TO°C	T 10 °C	T 20 °C	T 30 °C	T 40 %
system	eb-bbsg3	7976	0.35	100	5	0.25	stdard	1.1	16000	13500	9310	4690	1800	1000
system	eb-bbme1	10254	0.35	100	5	0.25	stdard	1.1	17300	15400	11970	6030	3000	1900
system	eb-bbme2	12533	0.35	100	5	0.25	stdard	1.1	19500	18200	14630	7370	3800	2300
system	eb-bbme3	12533	0.35	100	5	0.25	stdard	1.1	19500	18200	14630	7370	3800	2300
system	bbm	6266	0.35	1	1	1	stdard	1.1	14800	12000	7315	3685	1300	1000
system	bbtm	3598	0.35	1	1	1	stdard	1.1	8500	7000	4200	1800	1000	800
system	bbdr	3598	0.35	1	1	1	stdard	1.1	8500	7000	4200	1800	1000	800
system	acr	6266	0.35	1	1	1	stdard	1.1	14800	12000	7315	3685	1300	1000
system	eb-gb2	10177	0.35	80	5	0.3	stdard	1.3	22800	18300	11880	6120	2700	1000
system	eb-gb3	10177	0.35	90	5	0.3	stdard	1.3	22800	18300	11880	6120	2700	1000
system	eb-gb4	12250	0.35	100	5	0.3	stdard	1.3	25000	20000	14300	7700	3500	1200
system	eb-eme1	14512	0.35	100	5	0.3	stdard	1	30000	24000	16940	11060	6000	3000
QUOT		14016		130	5	0.25	stdard	1	30000	24000	16940	11060	6000	3000
user	SP12.5	4375	0.350	141.0	5.77	0.28	stdard	1.000	16514	10570	5107	1581		
user	SP20	2742	0.350	206.0	6.48	0.23	stdard	1.000	12803	7806	3201	1005		
user	Determine		0.000	204.0	6.23	0.19	stdard	1.000	15396	12158	7256	3283	1111	
user	Betoflex0/14V	6492	0.350	165.0	5.16	0.23	stdard	1.000	18111	12988	7578	3458	1174	
user	Betoflex0/14H	4718	0.350	230.0	6.55	0.20	stdard	1.000	16914	10970	5507	1981	591	
user	Betoflex0/10V	6744	0.350	168.0	4.636	0.34	stdard	1.000		13000	7872	3500		

PAVEMENT FUNCTIONALITIES STIFFNESS MODULUS

Layer Type	FAA Specified Layer	Rigid Pavement psi (MPa)	Flexible Pavement psi (MPa)	Poisson's Ratio
	P-501 Cement Concrete	4,000,000 (30,000)	NA	0.15
Surface	P-401/P-403 ¹ /P-404 Asphalt Mixture	NA 🤇	200,000 (1,380) ²	> ^{0.35}
	P-401/P-403Asphalt Mixture	400,000	(3,000)	0.35
	P-306 Lean Concrete	700,000	(5,000)	0.20
Stabilized	P-304 cement treated aggregate base	500,000	0 (3,500)	0.20
Base and Subbase	P-220 Cement treated soil base	250,000	0.20	
	Variable stabilized rigid	250,000 to 700,000 (1,700 to 5,000) NA		0.20
	Variable stabilized flexible	NA 150,000 to 400 (1,000 to 3,00		0.35
	P-209 crushed aggregate	Internal calculation	n by FAARFIELD ⁴	0.35
	P-208, aggregate	Internal calculation	0.35	
Granular Base and	P-219, Recycled concrete aggregate	Internal calculation	0.35	
Subbase	P-211, Lime rock	Internal calculation	n by FAARFIELD ⁴	0.35
	P-207 Recycled Asphalt aggregate base ³	25,000-	500,000	0.35
	P-154 uncrushed aggregate	Internal calculation	n by FAARFIELD ⁴	0.35
Subgrade ⁵	Subgrade	1,000 to 50,0	000 (7 to 350)	0.35
User-defined	User-defined layer	1,000 to 4,000,0	000 (7 to 30,000)	0.35

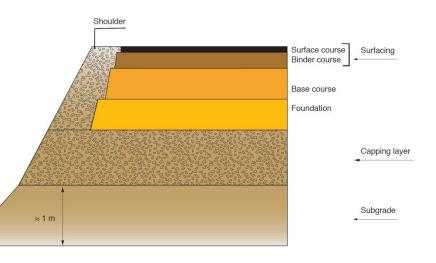
Table 3-2. Allowable Modulus Values and Poisson's Ratios Used in FAARFIELD

1. P-403 as surface when all aircraft less than 60,000 lbs (27,216 kg)

- A fixed modulus value for hot mix surfacing is set in the program at 200,000 psi (1380 MPa). This
 modulus value corresponds to a pavement temperature of approximately 90°F (32°C).
- The modulus of P-207 is dependent upon the quanty and it any additional stabilizing material incorporated, e.g. asphalt, cement, fly ash. Perform geotechnical laboratory testing with field materials to determine appropriate value.
- 4. See FAARFIELD help file for discussion of calculations.
- 5. CBR values for chemically modified subgrades lessor of 50% of laboratory strength or CBR 20.

U.S. Department of Transportation Advisory Circular Federal Aviation Administration Subject: Airport Pavement Design and Date: 6/7/2021 AC No: 150/5320-6G Evaluation Initiated By: AAS-100 Change: Purpose. This advisory circular (AC) provides guidance to the public on the design and evaluation of pavements used by aircraft at civil airports. For reporting of pavement strength, see AC 150/5335-5D, Standardized Method of Reporting Airport Pavement Strength – PCR. 2 Cancellation. This AC cancels AC 150/5320-6F, Airport Pavement Design and Evaluation, dated November 10, 2016. 3 Applicability. This AC does not constitute a regulation, and is not legally binding in its own right. It will not be relied upon as a separate basis by the FAA for affirmative enforcement action or other administrative penalty. Conformity with this AC is voluntary, and nonconformity will not affect rights and obligations under existing statutes and regulations, except for the projects described in subparagraphs 2 and 3 below: The standards and processes contained in this AC are specifications the FAA considers essential for the reporting of pavement strength. 2. Use of these standards and guidelines is mandatory for projects funded under Federal grant assistance programs, including the Airport Improvement Program (AIP). See Grant Assurance #34. This AC is mandatory, as required by regulation, for projects funded by the Passenger Facility Charge program. See PFC Assurance #9. Note: This AC provides one, but not the only, acceptable means of meeting the requirements of 14 CFR Part 139, Certification of Airports. Principal Changes. 4 This AC contains the following principal changes: 1. Reformatted to comply with FAA Order 1320.46. FAA Advisory Circular System.

Paving materials for airports



PAVING MATERIALS FOR AIRPORTS CHALLENGES

SPECIFICITIES

Heavy loads High pressure tyres Reduced movements Very high speed Work constraints

TYPES Speed Occupancy

FUNCTIONALITIES

Failure modes Stiffness modulus Wandering Friction Smoothness

PAVING MATERIALS FOR AIRPORTS

NATIONAL MASTER SPECIFICATION (NMS), SECTION 32 12 16 ASPHALT PAVING

- » Template "MASTER" type document
- » Material selection left to the consultant
 - Design approach highly variable from one airport to another
- » Type of mixes,
 - Base,
 - Surface,
 - Sheet asphalt rarely specified
- » PG Binder
 - Local practice
- » Sustainability LEED
 - RAP allowed but rarely specified
- » Marshall type mixes
 - 75 blows mainly

Sieve Designation	% Passing		
	Lower Course	Surface Course	Sheet Asphalt
200 mm	-	-	-
75 mm	-	-	-
50 mm	-	-	-
38.1 mm	-	-	-
25 mm	[100]	-	-
19 mm	-	-	-
12.5 mm	[70-85]	[100]	-
9.5 mm	-	-	[100]
4.75 mm	[40-65]	[55-75]	[85-100]
2.00 mm	[30-50]	[35-55]	[80-95]
0.425 mm	[15-30]	[15-30]	[40-70]
0.180 mm	[5-20]	[5-20]	[10-35]
0.075 mm	[3-8]	[3-8]	[4-14]
Property	Airfield Pavements	Roads	Sheet Asphalt
Marshall Stability at	[7.0]	[5.5] surface	[3.0]
60 degrees C kN		course/[4.5] lower	
min		course	
Flow Value mm	[2-4]	[2-4]	[2-5]
Air Voids in Mixture,	[3-5]	[3-5] surface	[3-5]
%		course/[2-6] lower	
		course	
Voids in Mineral	[15] surface	[15] surface	[16]
Aggregate, % min	course/[13] lower	course/[13] lower	
Index of Details of	COURSE	COURSE	[76]
Index of Retained	[75]	[75]	[75]
Stability % minimum			

PAVING MATERIALS FOR AIRPORTS

FAA AC NO.150/5370-10H

Template type document »

- Type of mixes dense graded »
 - P-401 mainly surface course •
 - P-403 mainly leveling and base course ٠
 - P-404 fuel resistant asphalt mixes for surface •
- **PG Binder** »
 - Grade bump for different types of pavement •
- Sustainability RAP **>>**
 - Not allowed in the binder and surface courses •
 - Up to 30% in the base layers ۲
- Marshall and Gyratory type mixes **>>**
 - 75 blows mainly ٠
 - Rut test may also be specified •

Table 2. Ag	ggregate - Asph	alt Pavements	
a: a:	Percentag	e by Weight Passing Sieves	
Sieve Size	Gradation 1	Gradation 2	Gradation 3 ¹
1 inch (25.0 mm)	100		
3/4 inch (19.0 mm)	90-100	100	
1/2 inch (12.5 mm)	68-88	90-100	100
3/8 inch (9.5 mm)	60-82	72-88	90-100
No. 4 (4.75 mm)	45-67	53-73	58-78
No. 8 (2.36 mm)	32-54	38-60	40-60
No. 16 (1.18 mm)	22-44	26-48	28-48
No. 30 (600 µm)	15-35	18-38	18-38
No. 50 (300 µm)	9-25	11-27	11-27
No. 100 (150 µm)	6-18	6-18	6-18
No. 200 (75 µm)	3-6	3-6	3-6
Voids in Mineral Aggregate (VMA)	14	15	16
Asphalt percent by total weigh	ht of mixture:		
Stone or gravel	4.5-7.0	5.0-7.5	5.5-8.0
Slag	5.0-7.5	6.5-9.5	7.0-10.5
Recommended Minimum Construction Lift Thickness	3 inch	2 inch	1 1/2 inch

¹Gradation 3 is intended for leveling courses. FAA approval is required for use in other locations.

Required Grade Bump

	High Temperature Adju	stment to Asphalt Binder Grade
Aircraft Gross Weight	All Pavement Types	Pavement area with slow or stationary aircraft
\leq 12,500 lbs (5670 kg)		1 Grade
< 100,000 lbs (45360 kg)	1 Grade	2 Grade
≥ 100,000 lbs (45360 kg)	2 Grade	3 Grade

Subject: Standard Specifications for Date: 12/21/2018 AC No: 150/5370-10H Construction of Airports Initiated By: AAS-100 Change:

Purpose The standard specifications contained in this advisory circular (AC) relate to materials and methods used for construction on airports. Items covered in this AC include general provision earthwork, flexible base courses, rigid base courses, flexible surface courses, rigid pavement, fencing, drainage, turf, and lighting installation.

Cancellation

This AC cancels AC 150/5370-10G, Standards for Specifying Construction of Airports, dated July 21, 2014.

Application

0

- The Federal Aviation Administration (FAA) recommends the guidelines and specifications in this AC for materials and methods used in airfield development for construction and rehabilitation projects on airports.
- This AC does not constitute a regulation and is not mandatory, however the following applie a. The standard specifications contained in this AC are practices that the FAA recommends for the construction of pavements and airport development serving aircraft greater than 30,000 pounds (13,600 kg).
- b. This AC contains methods and procedures for compliance with 14 CFR part 139 that are acceptable to the Administrator.
- c. The use of this AC is mandatory for all projects funded under Federal grant assistance programs, including the Airport Improvement Program (AIP). See Grant Assurance No 34. Policies, Standards, and Specifications.
- d. This AC is mandatory, as required by regulation, for projects funded with the Passenger Facility Charge program. See PFC Assurance #9, Standards and Specifications.
- For building construction, the General Contract Provisions are applicable, in addition applicable laws and local building codes shall serve as construction standards acceptable to the FAA.

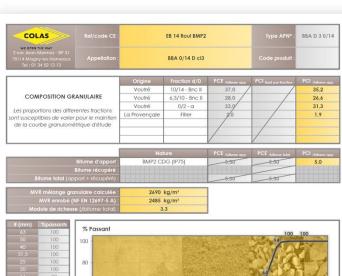
PAVING MATERIALS FOR AIRPORTS STAC – GUIDE TO THE APPLICATION OF STANDARDS

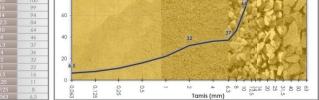
Table 4 - Products which may be used for airport pavements

Table 4 – Products which may be used for airport pavements (continued)

		Average thickness in use	Maximun acceptabl lack of				
N	ame	Classification Class or type	NF EN reference	Grading (1)	and minimum thickness at any point	flatness of existing substrate	
EB10-BBA C	surface course and binder course	Class 0, 1, 2 or 3 according to mechanical performance	NF EN 13 108-1	0/10	6 to 7 cm 4 cm	≤ 2 cm	
EB10-BBA D	surface course	Class 0, 1, 2 or 3 according to mechanical performance	NF EN 13 108-1	0/10	4 to 5 cm 3 cm	≤ 2 cm	
EB14-BBA C	surface course and binder course	Class 0, 1, 2 or 3 according to mechanical performance	NF EN 13 108-1	0/14	7 to 9 cm 5 cm	≤ 2 cm	
EB14-BBA D	surface course	Class 0,1, 2 or 3 according to mechanical performance	NF EN 13 108-1	0/14	5 to 7 cm 4 cm	≤ 2 cm	
EB10-BBME	surface course and binder course	Class 1, 2 or 3 according to mechanical performance	NF EN 0/10		5 to 7 cm 4 cm	≤ 2 cm	
EB14-BBME	surface course and binder course	Class 1, 2 or 3 according to mechanical performance	NF EN 13 108-1	0/14	6 to 9 cm 5 cm	≤ 2 cm	
EB10-BBM	surface course and	Type A, B or C according to grading curve Class 0, 1, 2 or 3	NF EN 13108-1	0/10	3 to 4 cm	≤ 1,5 cm	
	binder course	according to mechanical performance			2,5 cm		
EB14-BBM	surface course and	Type A, B or C according to grading curve Class 0, 1, 2 or 3	NF EN 13 108-1	0/14	3,5 to 5 cm	_ ≤ 1.5 cm	
EB14-BBM	binder course	according to mechanical performance	101001		3 cm	- ≤ 1,5 CM	
BBTM 6	surface course	Class 1 or 2	NF EN 13108-2	0/6,3	2 to 3 cm 1,5 cm	≤ 1 cm	
BBTM 10	surface course	Class 1 or 2	NF EN 13108-2	0/10	2 to 3 cm 1,5 cm	≤ 1 cm	

			Average thickness in use	Maximum acceptable lack of			
Na	ame	Classification Class or type	NF EN reference	Grading (1)	and minimum thickness at any point	flatness of existing substrate	
EB10-BBSG	surface course	Class 0, 1, 2 or 3 according	NF EN	0/10	5 to 7 cm	≤ 2 cm	
	and binder course	to mechanical performance	13108-1		4 cm		
EB14-BBSG	surface course	Class 0, 1, 2 or 3 according	NF EN	0/14	6 to 9 cm	≤ 2 cm	
	and binder course	to mechanical performance	13 108-1		5 cm		
ECF	-	-	In progress	0/6 to 0/10	Dosage to 10 or 15 kg/m ²	≤ 1 cm	
EB14-GB	Base	Class 2, 3 or 4 according	NF EN	0/14	8 to 14 cm	≤ 2 cm	
		to mechanical performance	13108-1		6 cm		
EB20-GB	Base	Class 2, 3 or 4 according	NF EN	0/20	10 to 16 cm	≤ 3 cm	
		to mechanical performance	13 108-1		8 cm		
EB10-EME	Base	Class 1 or 2 according	NF EN	0/10	6 to 8 cm	≤ 2 cm	
		to mechanical performance	13 108-1		5 cm		
EB14-EME	Base	Class 1 or 2 according	NF EN	0/14	7 to 13 cm	≤ 2 cm	
		to mechanical performance	13 108-1		6 cm		
EB20-EME	Base	Class 1 or 2 according	NF EN	0/20	9 to 15 cm	≤ 2 cm	
		to mechanical performance	13 108-1		8 cm		
ESU	-	Class A, B or C	NF EN 12271	2/4	-	≤ 2 cm	
EB4 or EB6	-	-	NF EN 13108-1	0/4 or 0/6	2 cm	≤ 1 cm	
Grouted previous bituminous mixtures (EP)	5 -	×	None	-	4 to 5 cm	≤ 2 cm	


(1) A grading corresponding to sieve D of series 1 is admissible.


(2) This is generally presented to limit or retard the occurrence of cracks, particularly in the case of foundations treated with cementitious binders (see « Techniques anti-remontée de fissures », a paper on techniques for avoiding cracks, published by STAC in 1999).


PAVING MATERIALS FOR AIRPORTS STAC – GUIDE TO THE APPLICATION OF STANDARDS

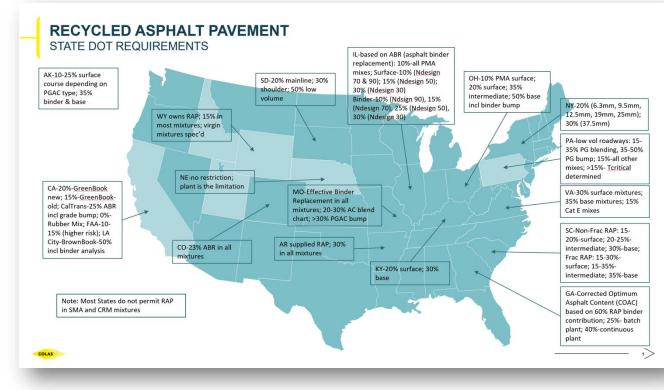
		Average thickness in use	Maximum acceptable lack of				
Name		Classification Class or type	NF EN reference	Grading (1)	and minimum thickness at any point	flatness of existing substrate	
EB10-BBA C	surface course and binder course	Class 0, 1, 2 or 3 according to mechanical performance	NF EN 13 108-1	0/10	6 to 7 cm 4 cm	≤ 2 cm	
EB10-BBA D	surface course	Class 0, 1, 2 or 3 according to mechanical performance	NF EN 13 108-1	0/10	4 to 5 cm 3 cm	≤ 2 cm	
EB14-BBA C	surface course and	Class 0, 1, 2 or 3 according to	NF EN 0/14		7 to 9 cm 5 cm	≤ 2 cm	
	binder course	mechanical performance					
EB14-BBA D	surface course	Class 0,1, 2 or 3 according to	NF EN 13 108-1	0/14	5 to 7 cm 4 cm	≤ 2 cm	
		mechanical performance					
	surface	Class 1, 2 or 3	NF EN		5 to 7 cm	≤ 2 cm	
EB10-BBME	course and binder course	according to mechanical performance	13 108-1	0/10	0/10 4 cm		
	surface	Class 1, 2 or 3	NF EN		6 to 9 cm	≤ 2 cm	
EB14-BBME	course and binder course	according to mechanical performance	13 108-1	0/14	5 cm		
EB10-BBM	surface course and	Type A, B or C according to grading curve Class 0, 1, 2 or 3	NF EN 13 108-1	0/10	3 to 4 cm	_ ≤ 1.5 cm	
	binder course	according to mechanical performance		10100	2,5 cm		
ED14 DDM	surface	Type A, B or C according to grading curve	NF EN 13108-1	0/14	3,5 to 5 cm	≤ 1,5 cm	
EB14-BBM	course and	Class 0, 1, 2 or 3	13 100-1				
EB14-BBM	course and binder course	according to	13 100-1	0/14	3 cm		
EB14-BBM BBTM 6			NF EN 13108-2	0/6,3	3 cm 2 to 3 cm 1,5 cm	≤ 1 cm	

PAVING MATERIALS FOR AIRPORTS STAC – GUIDE TO THE APPLICATION OF STANDARDS

Area	of airport	NS 1	NS 2	NS 3	NS 4
Parking areas		EB-BBA 2, ESU, ECF, EP, EB-BBM 1	EB-BBA 3, EB-BBM 2 EB-BBME 1, EP	(***) EP ⁽¹⁾	(***) EP ⁽¹⁾
	Main part	EB-BBA 1.	EB-BBA 1, EB-BBM A2, BBTM	EB-BBA 2	EB-BBA 2
Runways(*)	Turning area	EB-BBM A1,	EB-BBA 2, EB-BBME 1	EB-BBME 2 (2)	EB-BBME 3 (2)
	Exit	EB-BBM B1, BBTM	EB-BBA 2, EB-BBM A2	EB-BBA 3 EB-BBME 2	EB-BBA 3
	Threshold (**)		EB-BBA 2, EB-BBM A2	EB-BBA 3 ⁽²⁾	EB-BBA 3 ⁽²⁾
Taxiways	Main part	EB-BBA 1, ECF,	EB-BBA 2, EB-BBM B3, BBTM	EB-BBA 2, EB-BBME 1	EB-BBA 3, EB-BBME 2
	Intersections	EB-BBM B2, BBTM	EB-BBA 2, EB-BBM B3	EB-BBA 3, EB-BBME 2	EB-BBA 3, EB-BBME 2
Apron or holding area		EB-BBA 1, ECF, EB-BBM B2, BBTM	EB-BBA 3, EB-BBM B3	EB-BBME 3	EB-BBME 3

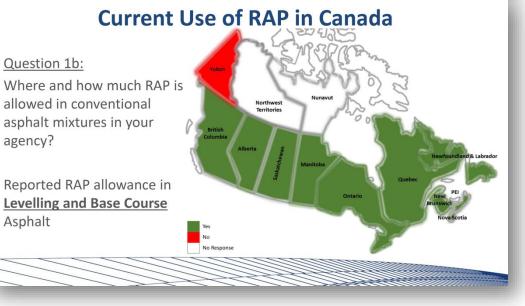
dgac STAC Bituminous mixtures and surface dressings for airport pavements Guide to the application of standards Present for the future Meissne de Maison, de Marge, de Schelgpernen, de Schelgpernen, de Bekler et de la Mei

Table 11 – Products which can be used for pavement bases.


Airp	ort area	NS 1	NS 2	NS 3	NS 4	
Parking areas		EB-GB 2	EB-GB 2	(1)	(1)	
Runways	Main part			EB-GB 2 EB-EME 1	EB-GB 3	
	Turning area Exit	EB-GB 2	EB-GB 2	EB-GB 3 EB-EME 1	EB-EME 2	
Tavingua	Threshold (**)			EB-GB 3	EB-GB 3	
Taxiways	Main part Intersections	EB-GB 2	EB-GB 2	EB-EME 1	EB-GB 3 EB-EME 2	
Apron or holding areas		EB-GB 2	EB-GB 2	EB-GB 3 EB-EME 1	EB-GB 3 EB-EME 2	

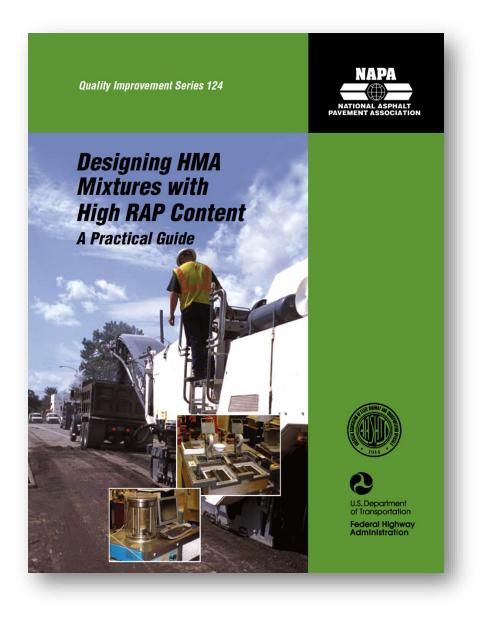
Traditional recycling

TRADITIONAL RECYCLING APPROACHES TO RECYCLING IN NORTH AMERICA

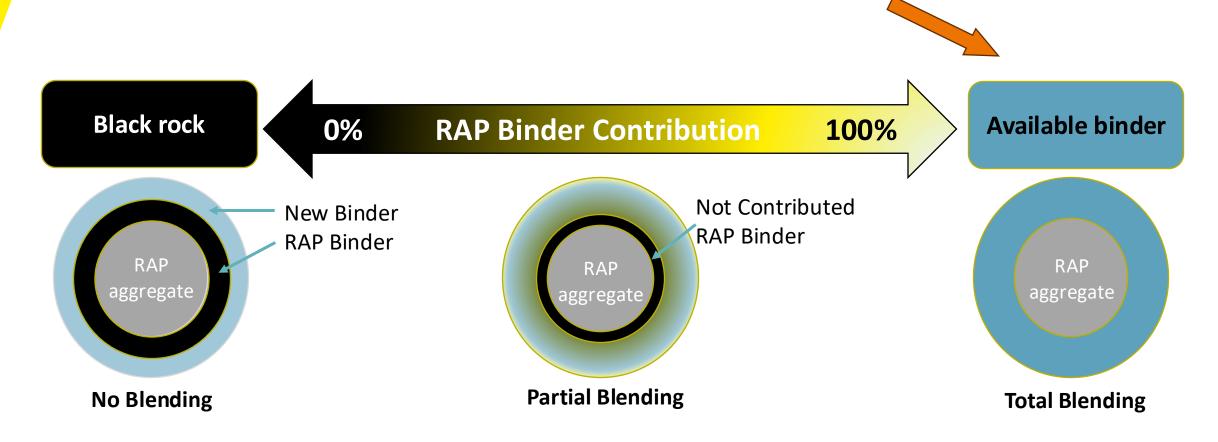

Current Use of RAP in Canada

Question 1a:

Where and how much RAP is allowed in conventional asphalt mixtures in your agency?


Reported RAP allowance in **Surface Course** Asphalt

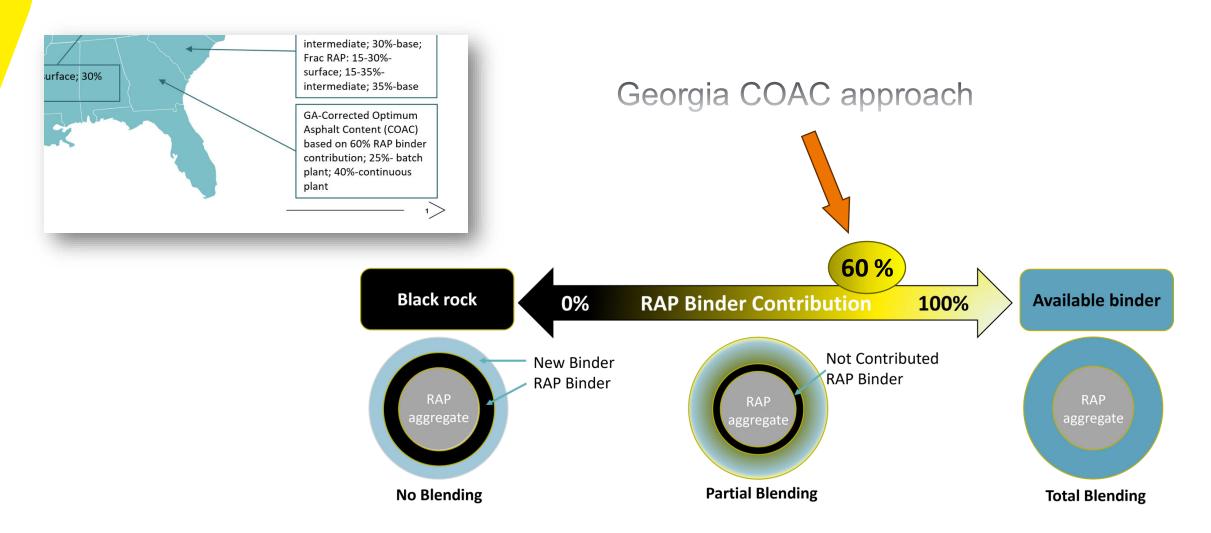
the RAP is onal your vance in halt


TRADITIONAL RECYCLING NAPA PRACTICAL GUIDE

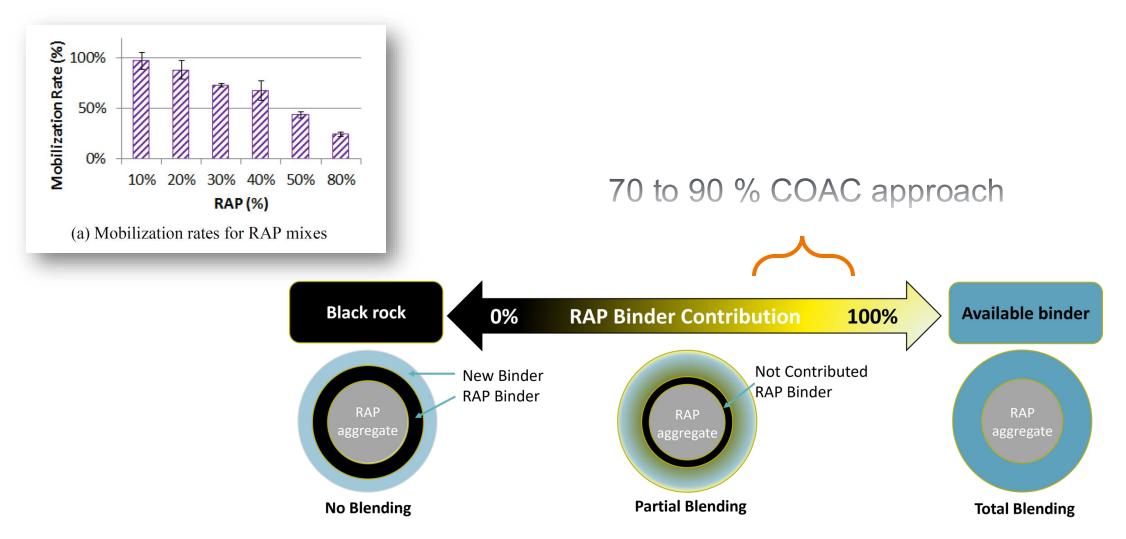
A study completed by Kandhal and Foo (1997) indicated that the evaluation of recycled mixture should be based on a three-tier process. Tier 1 included up to 15 percent RAP and would not require that anything be changed in the mix design process. Tier 2 included from 15 to 25 percent RAP and required that the new asphalt grade be dropped by one grade on the high and low ends of the PG grade. Tier 3 included more than 25 percent RAP and required that the asphalt be recovered from the RAP and blended with the virgin asphalt to produce a blended asphalt with the desired properties.

TRADITIONAL RECYCLING RAP BINDER CONTRIBUTION

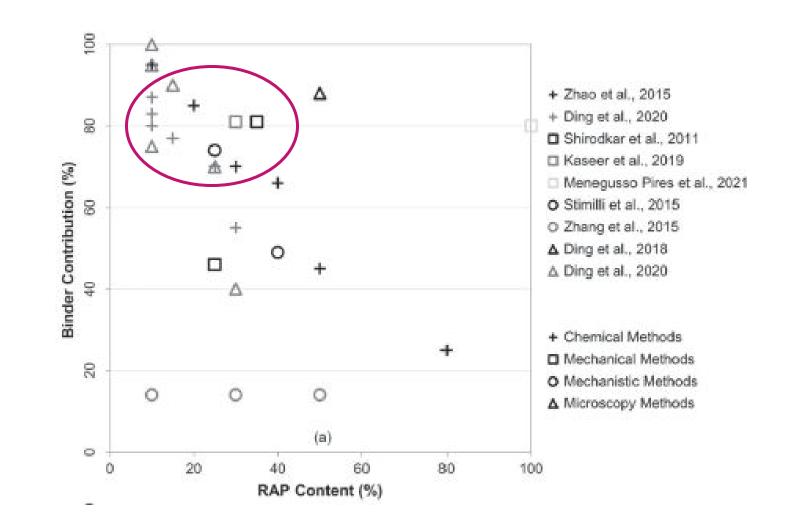
Traditional assumption


6

Performance-based recycling



- » Unsure about overall durability
- » Negative effect of aged binder of RAP in new asphalt
- » Increases mix stiffness of mix and loss of "ductility"
- » Accelerated aging of new asphalt mixture
- » Reduces cracking and fatigue resistance of new mixtures
- » Blending/diffusion between RAP binder and new virgin binder incomplete
- » Questionable permeability associated with lower workability
- » Blending of RAP with virgin aggregate and binder
- » Potential variability of RAP regarding aggregate and binder
- » Asphalt plant capability
- » Mixing temperature and heat transfer
- » RAP management and control


ALTERNATIVE APPROACH - GEORGIA

ALTERNATIVE APPROACH – ZHAO ET AL.

ALTERNATIVE APPROACH – BAOSHAN H.

CHALLENGES FOR AIRPORT PAVEMENTS

CHALLENGES FOR AIRPORT PAVEMENTS

Table 3 –Assessment of aggression levels and surface quality characteristics of a pavement

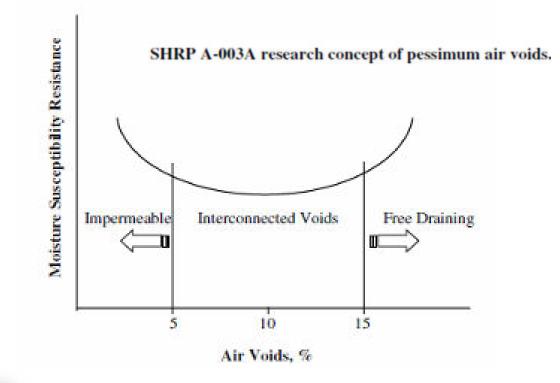
		Shearing	Rutting	Punching	Durability	Friction
Parking	Parking area		+++	+++	++	++
	Main part	+	+	+	++	+++
Runways	Turning area	+++	++	+	+++	++
	Exit	+++	+	+	++	+++
	Threshold (*)	+++	+	++	+++	+++
Taxiways	Main part	+	++	+	++	++
Taxiways	Intersections	++	++	++	+++	++
Apron or ho	Iding area	+	+++	+++	++	++

(*) including touch-down area

+: Low level ++: Medium level +++:High level

DURABILITY AND LOW IN-PLACE AIR VOIDS

NCAT Report 16-02 (2016)

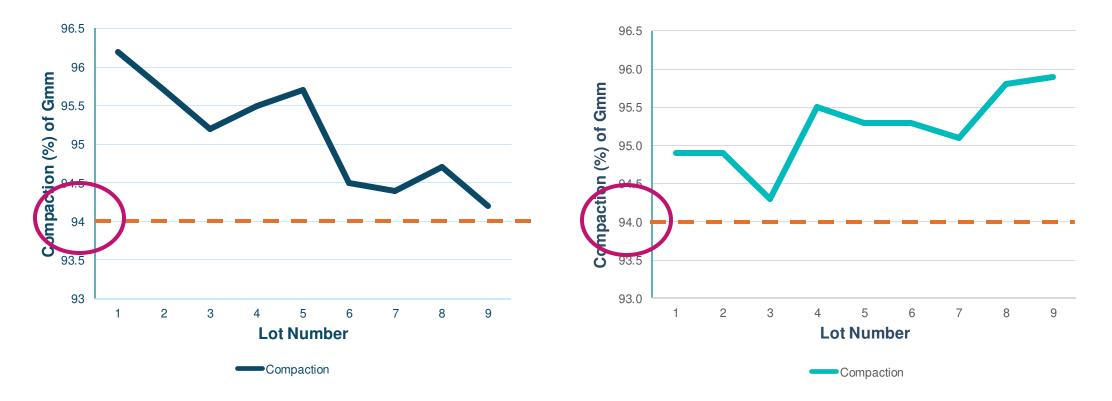

asphalt in

Literature Review on connecting in-place density to performance

- 5 studies cited for fatigue life
- 7 studies cited for rutting
- "A 1% decrease in air voids was estimated to improve the fatigue performance of asphalt pavements between 8.2 and 43.8%, to improve the rutting resistance by 7.3 to 66.3%, and to extend the service life by conservatively 10%."

Goal - Better Densities

"The amount of air voids in an asphalt mixture is probably the single most important factor that affects performance throughout the life of an asphalt pavement." - E. Ray Brown, NCAT Report 90-3

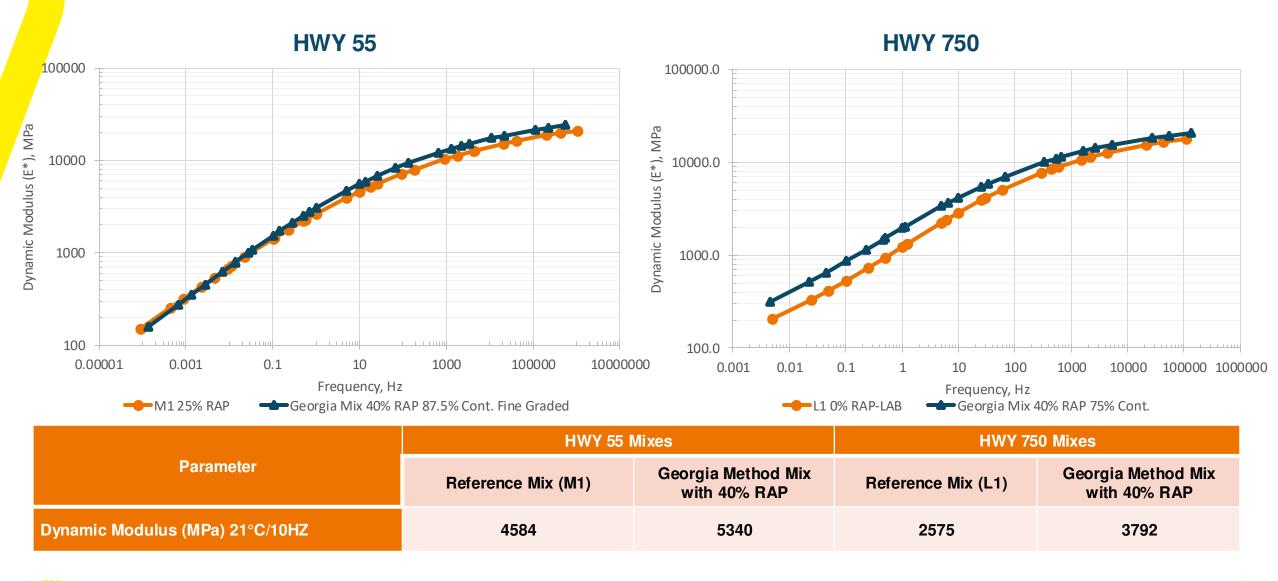

"Compaction is the most important factor in the performance of an HMA pavement."

- HMA Paving Handbook, US Army Corps of Engineers

QUALITY CONTROL FROM TWO PROJECTS IN ALBERTA

HWY 55

HWY 750


RUT TESTING FROM TWO PROJECTS IN ALBERTA

HWY 55

HWY 750

Міх Туре	Air voids (%)	Test Temp. (°C)	Failure reason	SIP*	Number of passes at 12.5 mm rutting	Rutting @ 20000 passes	Міх Туре	Air voids (%)	Test Temp. (°C)	Failure reason	SIP*	Number of passes at 12.5 mm rutting	Rutting @ 20000 passes
Reference	7	45	Maximum rutting	NA	19362	NA	Reference	7	40	Maximum rutting	10619	15390	NA
Mix (M1)	7	45	Maximum passes	NA	NA	11.77	Mix (L1)	7	40	Maximum passes	18390	NA	9.45
Georgia Method Mix with 40% RAP	6	45	Maximum passes	NA	NA	4.15	Georgia Method Mix with 40% RAP	6	40	Maximum passes	NA	NA	3.74
Rejuvenator Mix with 40% RAP	7	45	Maximum passes	NA	NA	4.71							

PERFORMANCE-BASED RECYCLING RUT TESTING FROM TWO PROJECTS IN ALBERTA

PERFORMANCE-BASED RECYCLING FATIGUE TESTING FROM TWO PROJECTS IN ALBERTA

	HWY 5	5 Mixes	HWY 750 Mixes		
Parameter	Reference Mix (M1)	Georgia Method Mix with 40% RAP	Reference Mix (L1)	Georgia Method Mix with 40% RAP	
Fatigue resistance (µdef) 10°C/25HZ	131	131	124	126	

ESTIMATED CARBON FOOTPRINT CRADLE-TO-GATE

HWY 55 Mixtures	CO2 (kg/t)	Carbon Reduction	HWY 750 Mixtures	CO2 (kg/t)	Carbon Reduction
M1 with 25% RAP (Reference)	55.3	0.0%	L1 with 0% RAP (Reference)	70.7	0.0%
Georgia Method Mix with 40% RAP	51.5	6.9%	Georgia Method Mix with 40% RAP	52.1	26.4%
Rejuvenator Mix with 40% RAP	47.4	14.4%			

Closing the loop

CLOSING THE LOOP WHY RECYCLING ?

- » Airport pavements are different than roadway pavements and the distinctions relate to speed, loading, tire pressure, movement, occupancy, and wandering
- » Dysfunctions are associated with shearing, rutting, punching, durability and friction
- » Surfacing pavement materials are usually specific to airport pavement while base asphalt mixes are not significantly different from their roadway counterparts
- » Recycling is allowed but not as a common practice: nearly never in Canada, only in base mixes for FAA funded airports, never in France
- » Recycling is under the label "sustainability" in the Asphalt Paving Canadian National Master Specification
- » Recycling is an opportunity and the 40% RAP mixes could be used to build airport pavements
- » Compared to traditional asphalt mixes CAOC mixes are more compact, and they offer improved rutting resistance, equivalent cracking resistance, comparable fatigue life and higher dynamic modulus
- » CAOC mixes exhibit similar surface texture and appearance to the standard mix
- » Recycling reduces the carbon footprint of airport pavement

JEAN-MARTIN CROTEAU, P.Eng.

Technical Director Colas Canada Inc. Suite 2400, 4950 Yonge Street Toronto, ON M2N 6K1

T: +1 780 868-2527 jeanmartin.croteau@colascanada.ca www.colascanada.ca

ARASH GHAHREMANI, P.Eng.

Senior Technical Manager Colas Canada Inc. 26120 Acheson Rd Edmonton, AB T7X 6B3

T: +1 416 678-3659 arash.ghahremani@colascanada.ca www.colascanada.ca