

SWIFT 2024 Shila Khanal, P.Eng. – ARA Senior Pavement Engineer

AIRPORT PAVEMENT FRICTION - CASE STUDIES FOR CANADA/US

INTRODUCTION

- What is Friction?
- Why is it important?
- How to create friction?
- How to measure friction?
- Examples of Runway friction data

WHAT IS FRICTION?

- Friction is the physical property derived when two materials make contact against each other.
 - Dependant on material properties and force between them.

WHY IS FRICTION IMPORTANT?

The ability of a *moving vehicle* to stop and maneuver *safely* is dependent on the friction available at the tire interface, the tires are the only point of contact between a vehicle and the pavement.

ADEQUATE PAVEMENT FRICTION HELP PREVENT ACCIDENTS

Friction NCHRP 1-43 Final Guide

Lack deficition can lead to skidding, hydroplaning, or accidents, making it essential for safety.

THE SCIENCE OF FRICTION

- Friction Coefficient (µ)
 - The friction coefficient measures how well tires grip the runway, directly influencing braking efficiency and aircraft control.
- Surface Friction Force required to slide a tire on the pavement

 $\mu = F/W$ and $F = \mu W$

F = force required to pull skidding tire

- μ = coefficient of friction
- W = vertical load on tire

REGULATIONS

- ICAO Standards
 - ICAO defines the Friction Level Requirements for runways, setting specific limits for acceptable friction, especially in wet or contaminated conditions.
- Transport Canada
 - Follows ICAO's friction standards, with national regulations defined in the **TP 312** document, ensuring consistency with international practices.

FACTORS INFLUENCING SKID RESISTANCE

Remember, friction is dependent on the properties of the tire and the pavement...but lets assume our tire is taken care off!

- Bleeding Asphalt
- Polished Aggregate
- Micro and Macrotexture
- Rutting
- Inadequate Cross Slope

FACTORS AFFECTING RUNWAY FRICTION

- Contaminants
 - Rubber Deposits
 - Jet Fuel
 - Oil Spillage
 - Water

FRICTION TESTING DEVICES

- Continuous Friction Measuring Equipment (CFME)
 - Surface Friction Tester (SFT)
 - Benchmark for standard runway coefficient of friction
- Spot Measuring Devices (Decelerometers)
 - Deceleration rate of vehicle braked to four wheel lock up
 - Friction values available to Pilots as CRFI (Canadian Runway Friction Index)

TYPES OF FRICTION MEASUREMENTS

- Continuous Friction Measuring Equipment (CFME)
 - Used globally, these devices comply with both ICAO and Transport Canada standards for measuring runway friction.
- 65 km/h (40 mph): Determines the overall micro texture / contaminant / drainage condition of the pavement surface
- 95 km/h (60 mph): Provides an indication of the condition of the surface's macro texture

CFME: OFFSET FROM CENTERLINE

- Runways Serving <u>Only Narrow</u> Body Aircrafts:
 - Friction surveys should be conducted 3 m (10 ft) to the left and right of the runway centerline
- Runways Serving <u>Narrow</u> Body and <u>Wide</u> Body Aircrafts:
 - Friction surveys should be conducted 3 and 6 m (10 and 20 feet) to the left and right of the runway centerline to determine the worst case condition.

FRICTION CLASSIFICATION

	FAA AC150/5320-12C
TABLE 3-2. FRICTION LEVEL	CLASSIFICATION FOR RUNWAY PAVEMENT SURFACES

	40 mph			60 mph			
	Minimum	Maintenance Planning	New Design/ Construction	Minimum	Maintenance Planning	New Design/ Construction	
Dynatest Consulting, Inc. Runway Friction Tester	0.50	0.60	0.82	0.41	0.54	0.72	
Airport Equipment Co. Skiddometer	.50	.60	.82	.34	.47	.74	
Auport Surface Friction Tester	.50	.60	.82	.34	.47	.74	
Airport Technology USA Safegate Friction Tester	.50	.60	.82	.34	.47	.74	
Findlay, Irvine, Ltd. Griptester Friction Meter	.43	.53	.74	.24	.36	.64	
Tatra Friction Tester	.48	.57	.76	.42	.52	.67	
Norsemeter RUNAR (operated at fixed 16% slip)	.45	.52	.69	.32	.42	.63	

CASE STUDY – DND AIRPORTS CANADA

Annual summer testing program.

•Testing complete with a SARSYS, Surface Trailer Friction Tester (STFT).

Geographical location around Canada

CASE STUDY – DND AIRPORTS CANADA

CASE STUDY – RUNWAY IN BRITISH COLUMBIA

RUNWAY IN BRITISH COLUMBIA

CASE STUDY – RUNWAY IN NORTH CAROLINA

- Pavement dry, Weather 50s degree F
- At 3 m and 6 m left and right of the runway centerline
- Testing completed with 1 mm water film application at 65 km/hr and 95 km/hr
- Tested with Dynatest 6875 Runway Friction Tester (RFT) – Meets

FRICTION VALUES AT 65 KM/HR (40 MPH)

Runway	10-28 40mph	Mu				
From 10 End	From 10 End	10-28 20ft	10-28 10ft	\bigvee	10-28 10ft	10-28 20ft
Threshold (ft)	Threshold End (ft)	Left	Left	\square	Right	Right
0	500	-	-	\ge	-	-
500	1000	0.60	0.58	\ge	0.61	0.81
1000	1500	0.64	0.59	\ge	0.56	0.75
1500	2000	0.62	0.56	\geq	0.61	0.70
2000	2500	0.60	0.56	\ge	0.65	0.68
2500	3000	0.61	0.58	\geq	0.63	0.67
3000	3500	0.58	0.56	\geq	0.61	0.64
3500	4000	0.58	0.54	\geq	0.61	0.69
4000	4500	0.59	0.56	\geq	0.61	0.66
4500	5000	0.56	0.54	\geq	0.57	0.63
5000	5500	0.57	0.55	\ge	0.57	0.64
5500	6000	0.60	0.47	\ge	0.50	0.67
6000	6500	0.61	0.50	\ge	0.499	0.66
6500	7000	-	-	\times	-	-
Mu Map Color Legend 40mph						
Mu < 0.50 (M	IFL)	RED (0.5 is the FAA Minimium Friction Level, MFL)				
Mu > 0.5 and	< 0.60 (M PL)	YELLOW (Maintenance Planning Friction Level, MPL)				
Mu > 0.6 and	< 0.82 (D O L)	GREEN (FAA Acceptable Range)				
Mu > 0.82		BLUE (New Design/ Construction Level)				

FRICTION VALUES AT 95 KM/HR (60 MPH)

Runway	10-28 60mph			Mu			
From 10 End	From 10 End	10-28 20ft	10-28 10ft	\mathbb{N}	10-28 10ft	10-28 20ft	
Threshold (ft)	Threshold End (ft)	Left	Left	\square	Right	Right	
0	500	20		\ge	-	1	
500	1000	20	<u>2</u> 3	\ge	-	-	
1000	1500	0.58	0.54	\geq	0.48	0.55	
1500	2000	0.55	0.49	\ge	0.50	0.51	
2000	2500	0.52	0.50	\ge	0.50	0.54	
2500	3000	0.55	0.52	\geq	0.53	0.54	
3000	3500	0.53	0.49	\ge	0.51	0.51	
3500	4000	0.51	0.48	\geq	0.49	0.51	
4000	4500	0.52	0.47	\ge	0.51	0.52	
4500	5000	0.50	0.46	\geq	0.45	0.49	
5000	5500	0.49	0.45	\ge	0.42	0.47	
5500	6000	0.51	0.47	\geq	0.47	0.51	
6000	6500	-		\ge	- 1	-	
6500	7000	-	-	\ge	-	-	
Mu Map Color Legend 60mph							
Mu < 0.41 (MFL) RED (0.41 is the FAA Minimium Friction Level, MFL)							
Mu ≥ 0.41 an	d < 0.54 (MPL)	YELLOW (Maintenance Planning Friction Level, MPL)					
Mu ≥ 0.54 an	d < 0.72 (D O L)	GREEN (FAA Acceptable Range)					
Mu ≥ 0.72		BLUE (New Design/ Construction Level)					

CONCLUSION

 48% of the runway is below the maintenance planning friction level at 40mph and 88% is below the maintenance planning friction level at 60mph.

CASE STUDY - RUNWAY IN ARIZONA

- Municipal Airport
- Length- 6,500 ft
- Pavement Surface Type AC
- Before and after application of a surface treatment

PRE-APPLICATION DATA 40MPH

POST APPLICATION DATA 40 MPH

PRE-APPLICATION DATA 60 MPH

POST-APPLICATION DATA 60 MPH

QUESTIONS?