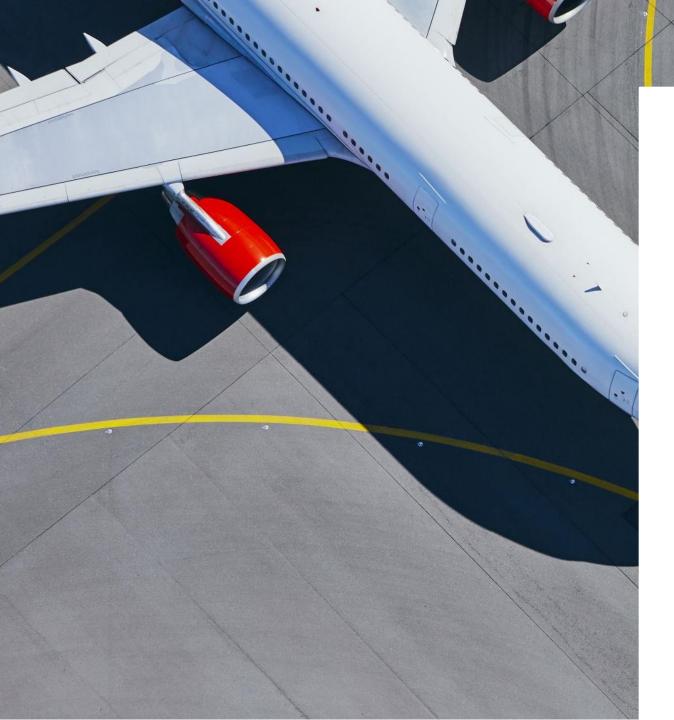


REGIONAL AIRPORT INFRASTRUCTURE AUDIT

5

SEPT 17-19 2024

Paula Barbi, Ph.D. Civil/Pavement EIT paula.barbi@stantec.com


Purpose

The purpose of the presentation is to demonstrate the asset audit **process** at small regional airports and the **benefits** it can bring regardless of the **size** of commercial operations.

We will start by outlining the **entirety** of the scope of an asset audit, and later focus on the **pavement** asset.

Agenda

- 1. Asset Audit Scope
 - State of good repair
 - Types of recommendations
 - Opinions of Cost and Planning
- 2. Pavement Audit
 - Pavement condition assessment
 - Visual Pavement Condition Survey
 - Data analysis using PAVER
 - State of good repair
 - Replacement value
 - Long Term Work Program
- 3. Conclusions

A Tangible Asset Audit can include:

- Buildings and IT systems
- Utilities
 - Airside & landside electrical systems
 - $\circ~$ Sewer, stormwater and water networks
- Airside and landside pavements
- ARFF trucks
- Airport maintenance equipment

Asset Audit Scope

- 1. Reviewed documentation
- 2. Interviews
- 3. Visual "walk-through" assessment (interior and exterior)

- 4. Identified and financially quantified:
 - Local deficiencies
 - Components that have or will soon achieve their EUL
- 5. Provided corresponding order-ofmagnitude costs for work

Summary of the audit findings results

- Review existing condition
 - Attend to pre-requisites of use?
- Assess maintenance practices
 - Maintenance frequency?
 - Proper maintenance practices?

7

Types of recommendations

Identified systems or components to be repaired or replaced

EXAMPLE:

Airport Terminal Building Short-Term Recommendations

	ATB Short-Term Recommendations					
Conduct study to determine the cause of water infiltration into the basement of the building. The study should provide repair options and associated construction costs.						
Repair/replacement of damaged exterior composite panels on the perimeter of the building.						
Conduct pa	ainting of stair and handrails.					
Conduct re	enewal of painted concrete finishes.					
Conduct replacement of carpet in offices and Passenger hold area.						
Conduct cl	leaning of exterior trench drain and related piping on the north side of the building.					

Opinions of Cost and Planning

• Accounts for the current and lifecycle repair/replacement expenditures over the next years

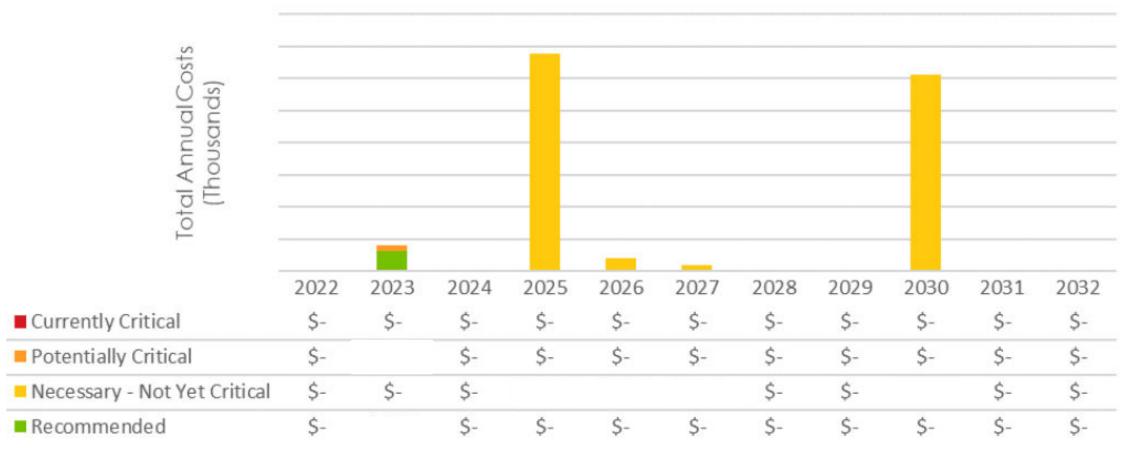
EXAMPLE:

Airport Terminal Building Expenditure Costs Summary

Term	Total Opinion of Cost (\$)*
Immediate-Term (Year 0)	-
Short-Term (Year 1)	100,000
Mid-Term (Years 2 to 5)	800,000
Long-Term (Years 6 to 10)	1,000,000
Total Cost	1,900,000

Opinions of Cost and Planning

• Priority Rating System


Describes the **urgency** of the recommended actions (repair/replacement)

1	2 3		4	5
Currently Critical	Potentially Critical	Necessary – Not Yet Critical	Recommended	N/A
Require prompt action to prevent injury (within 90 days)	Action required within the short term (1 year of the evaluation)	Action recommended within the next 2 to 5 years	Action recommended within the next 6 to 10 years	Does not require any action

Opinions of Cost and Planning

Annual Cost of Airport Terminal Building Separated by Priority Rating

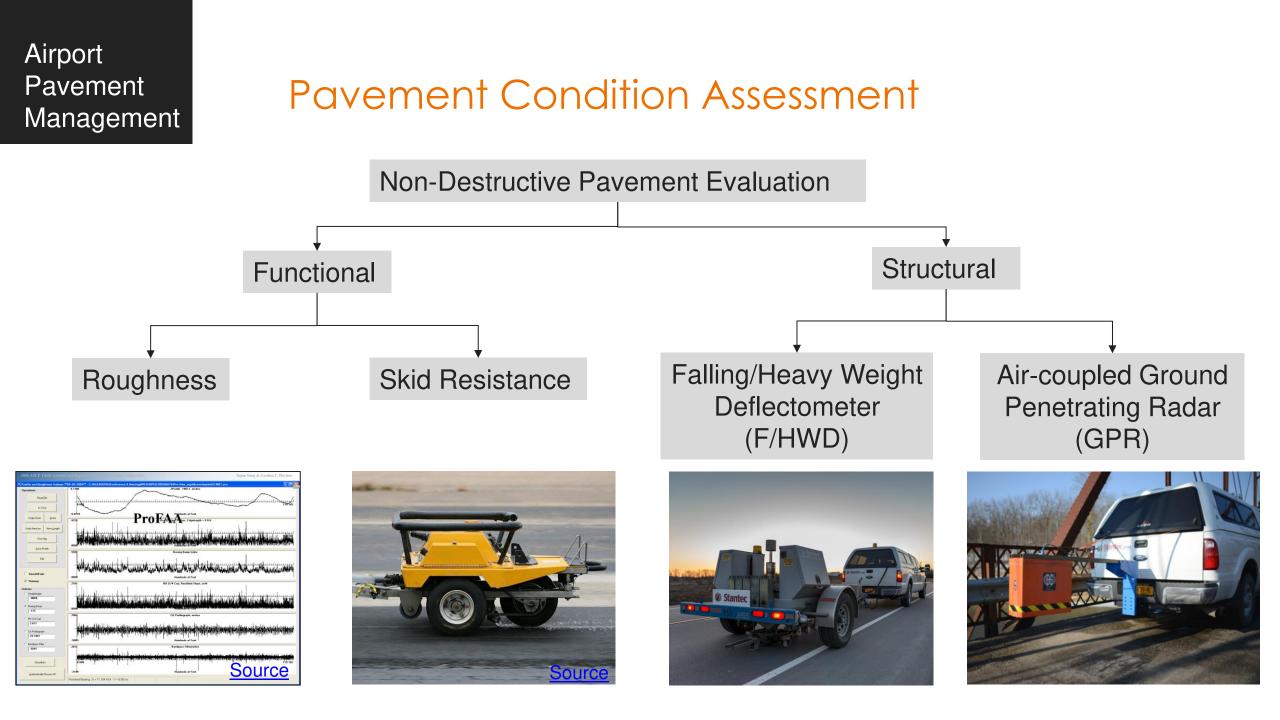

Agenda

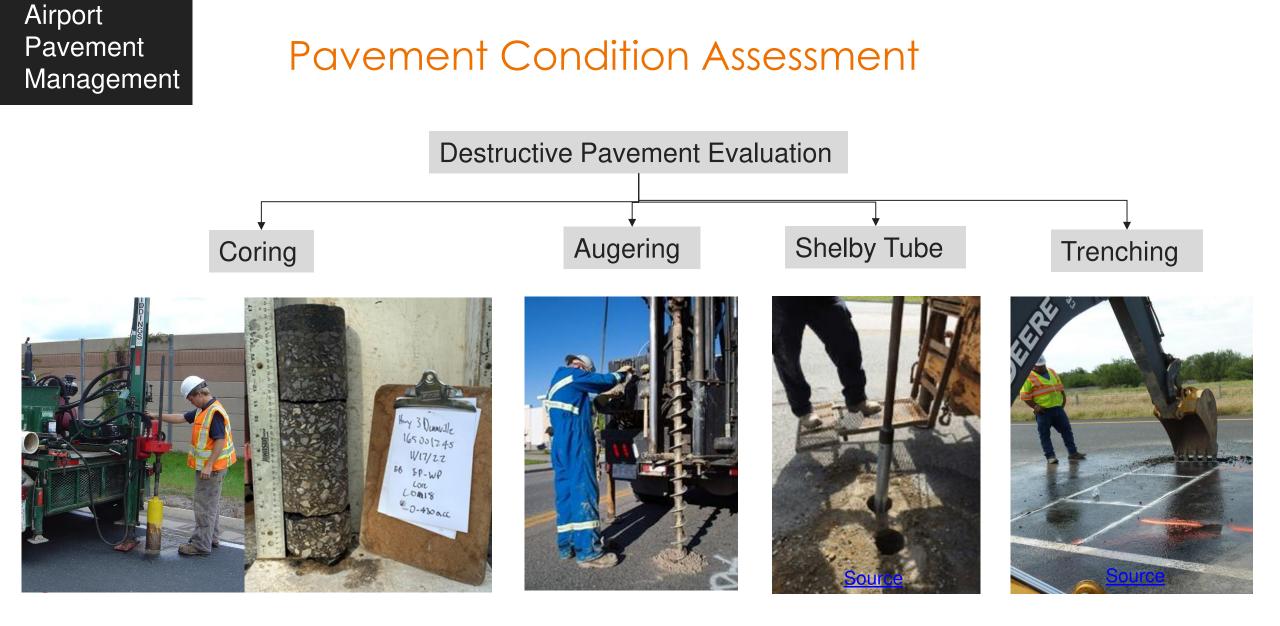
- 1. Asset Audit Scope
 - State of good repair
 - Types of recommendations
 - Opinions of Cost and Planning

2. Pavement Audit

- Pavement condition assessment
- Data analysis using PAVER
- State of good repair
- Replacement value
- Long Term Work Program
- 3. Conclusions

Pavement Condition Assessment




Non-Destructive Pavement Evaluation

Destructive Pavement Evaluation

Visual Pavement Condition Survey

Divide Pavement Sections by Branch Use

Branches are further subdivided into sections. Contiguous areas with uniform construction, maintenance, usage, and history.

Branch Use	Number of Sections
Runway	16
Taxiway	2
Apron	7
Access Road	23
Helipad	5
Parking Lot	21
Total	74

Visual Pavement Condition Survey

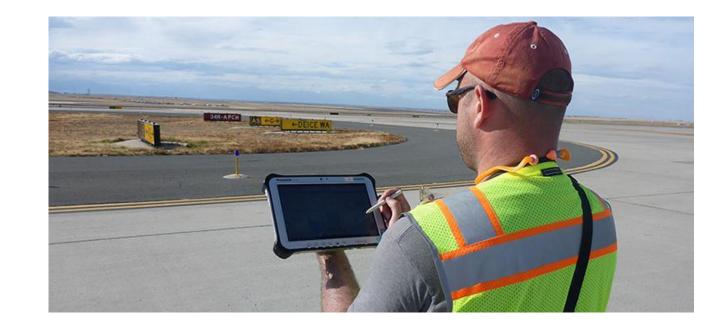
Aircraft-serving pavements (i.e., runways, taxiways, aprons) ASTM D5340-20: Standard Test Method for Airport Pavement Condition Index Surveys.

Groundside or non-aircraft serving pavements (i.e., service roads and access roads) ASTM D6433-20: Standard Practice for Roads, and Parking Lots Pavement Condition Index Surveys.

Random sampling technique

SWIFT

Visual Pavement Condition Survey


Type e.g., Transverse Cracking, Rutting, Raveling, etc.

Extent:

How much is there?

Severity:

How bad is it? Low/ Moderate/ High

S**₩IF**T

Visual Pavement Condition Survey

> ASTM 5340-20 (Aircraft-serving pavements)

Flexible Paver	ment Distresses	Rigid Pavement Distresses			
 Alligator Cracking Bleeding Block Cracking Corrugation Depression Jet-Blast Erosion Joint Reflection Cracking Longitudinal & Transverse Cracking 	 9. Oil Spillage 10. Patching and Utility Cut Patching 11. Polished Aggregate 12. Raveling 13. Rutting 14. Shoving 15. Slippage Cracking 16. Swell 17. Weathering 	 Blowup Corner Break Cracks: Longitudinal, Transverse, and Diagonal Durability "D" Cracking Joint Seal Damage Patching, Small Patching, Large and Utility Cuts Popouts Pumping 	 10. Scaling 11. Settlement or Faulting 12. Shattered Slab/Intersecting Cracks 13. Shrinkage Cracking 14. Spalling (Longitudinal and Transverse Joint) 15. Spalling (Corner) 16. Alkali Silica Reaction (ASR) 		

S**₩IF**T

Visual Pavement Condition Survey

> ASTM 6433-20 (Groundside Pavements)

Flexible Pave	ment Distresses	Rigid Pavemen	t Distresses
 Alligator Cracking Bleeding Block Cracking Bumps and Sags Corrugation Depression Edge Cracking Joint Reflection	 10. Longitudinal &	 Blowup/Buckling Corner Break Divided Slab Durability "D" Cracking Faulting Joint Seal Damage Lane/Shoulder Drop-	 Patching, Small Polished Aggregate
Cracking Lane/Shoulder Drop	Transverse Cracking 11. Patching and Utility Cut	Off Linear Cracking Patching, Large, and	Popouts Pumping Punchout Railroad Crossing Railroad Crossing Scaling/Map
Off	Patching 12. Polished Aggregate 13. Potholes 14. Railroad Crossing 15. Rutting 16. Shoving 17. Slippage Cracking 18. Swell 19. Weathering/Raveling	Utility Cuts (Large)	Cracking/Crazing Shrinkage Cracking Spalling, Corner Spalling, Joint

Visual Pavement Condition Survey

Survey Samples

Sample unit:

- Approx. 450 m² for asphalt sections
- Approx. 20 contiguous slabs for concrete sections

# Sample Units per Section	# Samples in Survey
1 to 5 sample units	1 sample unit
6 to 10 sample units	2 sample units
11 to 15 sample units	3 sample units
16 to 40 sample units	4 sample units
Over 40 sample units	10%

Visual Pavement Condition Survey

Survey Samples

21

22

Visual Pavement Condition Survey

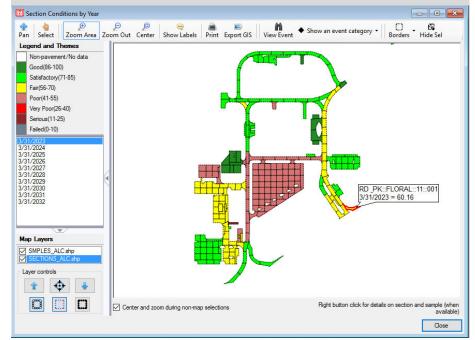
Pavement Condition Index (PCI) - Categories

PCI	Condition	Possible Treatment Category	Potential Life Remaining
86 - 100	Good	Routine Maintenance Activities	12 to 20 years
71 – 85	Satisfactory	Preventive Maintenance Activities	10 to 15 years
<mark>56 – 70</mark>	Fair	Light Rehabilitation	7 to 10 years
41 – 55	Poor	Heavy Rehabilitation	3 to 7 years
26 - 40	Very Poor		
11 – 25	Serious	Partial to Full Reconstructions	0 to 5 years
0 – 10	Failed		

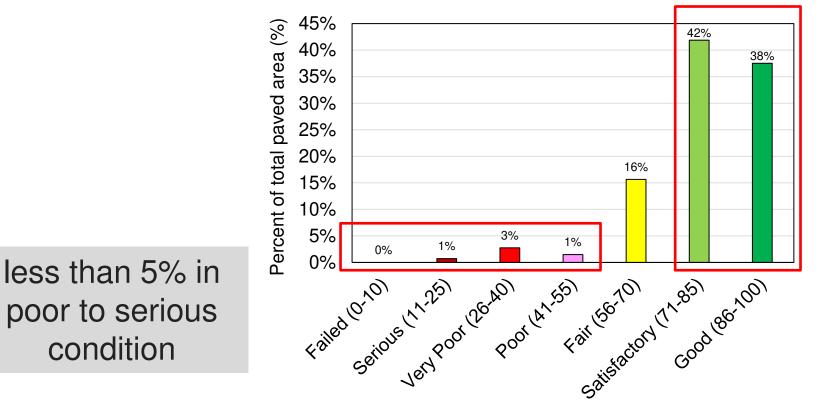
Visual Pavement Condition Survey

- Critical PCI values → identify "needs"
- Priority branches threshold
- No true industry standards. Typically range from 50 to 70

Critical PCI by Family Model


Family Model	Critical PCI
AC for Aircraft – Major	70
AC for Aircraft - Intermediate	65
AC for Aircraft – Minor	60
AC for Ground Vehicles	50
ACP for Aircraft	65
PCC for Aircraft	60

Visual Pavement Condition Survey



PAVER pavement management program

Network PCI Category Distribution

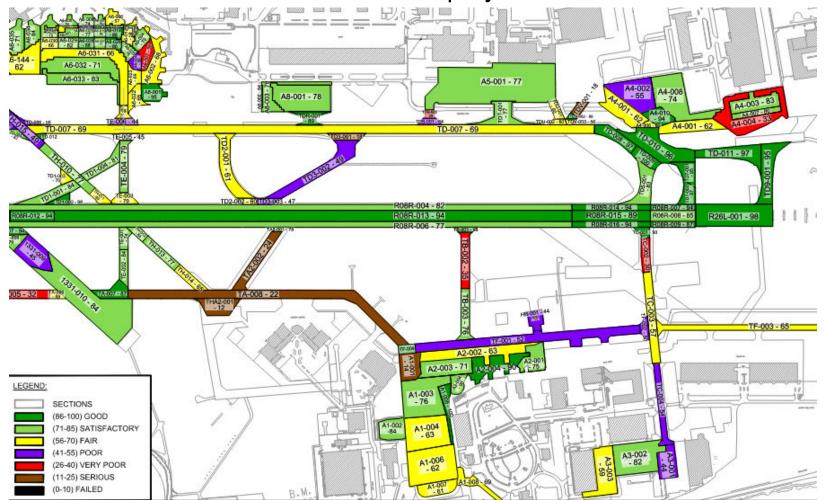
~ 80% in good or satisfactory condition

Pavement Condition Index (PCI) Category

Network Pavement Condition Index Results by Section

Branch ID	Section ID	Surface	Use	Section Rank	Area (sq.m.)	Inspection Date	PCI	PCI Category	Critical PCI	Above or Below Critical?
APR-EAST	APREAST-S1	AC	APRON	Р	13,291	10-26-2022	66	Fair	60	Above
APR-I	APRMAIN-S2	PCC	MAIN APRON	Р	4,955	10-26-2022	100	Good	60	Above
APR-I	APRMAIN-S3	AC	MAIN APRON	Р	-	-	-	-	65	-
APR-I	APRMAIN-S1	AC	MAIN APRON	Р	8,421	10-26-2022	74	Satisfactory	65	Above
APR-WEST	APRWEST-S1	AC	APRON	Р	10,694	10-26-2022	59	Fair	60	Below
APR-WEST	APRWEST-S2	AC	APRON	Р	9,882	10-26-2022	27	Very Poor	60	Below
APR-WEST	APRWEST-S3	AC	APRON	Р	11,965	10-26-2022	60	Fair	60	Below
AR	242-APR-S1	AC	ROADWAY	S	386	10-26-2022	52	Poor	50	Above
AR	242-PRK-S1	AC	ROADWAY	S	369	10-27-2022	93	Good	50	Above
AR	242-PRK-S2	AC	ROADWAY	S	1,033	10-26-2022	75	Satisfactory	50	Above
AR	242-PRK-S3	AC	ROADWAY	S	1,211	10-26-2022	59	Fair	50	Above
AR	242TREK-S1	AC	ROADWAY	S	201	10-27-2022	65	Fair	50	Above
AR	242TWRLNS1	AC	ROADWAY	S	389	10-27-2022	54	Poor	50	Above
AR	242TWYA-S1	AC	ROADWAY	S	882	10-26-2022	100	Good	50	Above
AR	EXCFLTCRS1	AC	ROADWAY	S	708	10-26-2022	90	Good	50	Above
AR	EXCFLTCRS2	AC	ROADWAY	S	1,370	10-26-2022	92	Good	50	Above
AR	HELI-LN-S1	AC	ROADWAY	S	2,202	10-26-2022	73	Satisfactory	50	Above
AR	HELI-SC-S1	AC	ROADWAY	S	2,182	10-26-2022	100	Good	50	Above

In this example, the asset is operated and maintained under subtenant lease arrangement

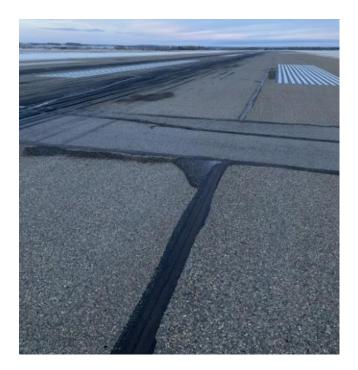

Network Pavement Condition Index Results by Branch Use

Branch Use	# Sections	Pavement Area (sq.m.)	Weighted Average PCI	PCI Category
RUNWAY	9	102,360	80	Satisfactory
SECONDARY RWY	7	87,005	91	Good
TAXIWAY	3	57,435	84	Satisfactory
MAIN APRON	3	13,377	84	Satisfactory
APRON	4	45,833	54	Poor -
HELIPAD	5	5,214	88	Good
ROADWAY	23	35,843	76	Satisfactory
PARKING	21	67,975	88	Good
Network	75	415,040	81	Satisfactory

In this example, the asset is operated and maintained under subtenant lease arrangement

Pavement Condition Map by Section

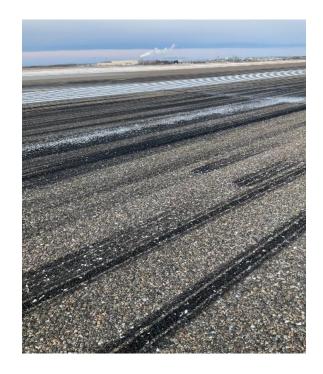
28



Sections below critical PCI

Branch ID	Section ID	Surface	Use	Critical PCI	PCI
APR-WEST	APRWEST-S1	AC	APRON	60	59
APR-WEST	APRWEST-S2	AC	APRON	60	27
APR-WEST	APRWEST-S3	AC	APRON	60	60
PL	N-TERM-S1	AC	PARKING	50	25
PL	TKR-BS-S1	AC	PARKING	50	36
RWY12-30	RWY1230S6K	AC	RUNWAY	70	69

Runway



Crack seals and patching mostly in good condition

Isolated spots with rutting and

spalling

Rutting near landing area

Runway

Premature distresses and depressions

Runway

Longitudinal cracks (construction joints)

Patching

32

Runway

Transverse Cracking

Improper shoulder slope

Runway

Mild Weathering and Raveling

Taxiways

Cracks sealed, mostly in good condition

Main Apron: Flexible (commonly used for de-icing)

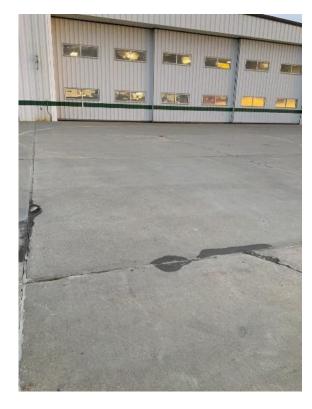
PCI is near the lower limit of the "good" classification range

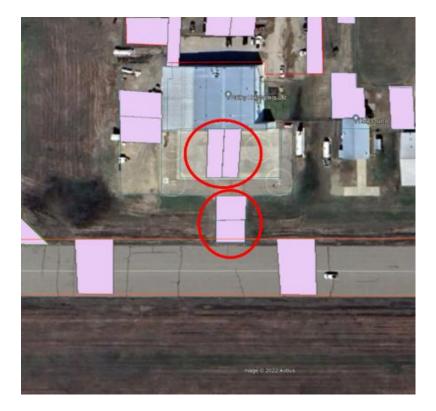
Sealed cracks, some partially failed

Transverse Cracking

36

Main Apron: Rigid




Joint sealant in moderate condition

Helipads

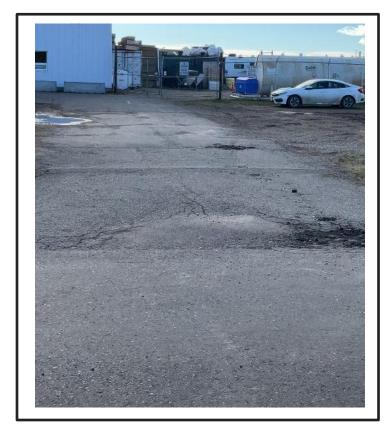
Cracks w/ poor sealant and depression

Joint damage and faulting on concrete helipads

Sample helipad locations 38

Roadways

Edge cracking with vegetation



Ramping patch in poor condition

Equipment and Tenant Parking Areas

Pavement distortions

Alligator cracking

Standard pavements based on existing structures

- Airside: runways, taxiways, aprons, and helipads
- Groundside: roadways and parking lots

RUNWAYS+TAXIWAYS+APRONS+HELIPADS							
Service	Quantity	Unit					
Removal							
Asphalt Milling	41,900	m ³					
Granular excavation	311,950	m ³					
Construction							
Asphalt	118,440	Tons					
Asphalt Tack Coat	644,520	m ²					
Granular Base	238,560	Ton					
Granular Subbase	483,170	Ton					
Subgrade prep	354,490	m ²					
Other							
Line Marking	2,160	m ²					
Top soil + seeding	32,230	m ²					

ROADWAY+PARKING							
Removal							
Asphalt Milling	7,910	m ³					
Granular excavation	52,710	m ³					
Construction							
Asphalt	19,370	Ton					
Asphalt Tack Coat	210,830	m ²					
Granular Base	39,020	Ton					
Granular Subbase	95,380	Ton					
Subgrade prep	115,960	m ²					
Other							
Line Marking	4,220	m ²					
Top soil + seeding	10,550	m ²					
		42					

Quantity per Pavement Replacement Service

Class of work including Labor, Plant and Material	Unit of Measure	Unit Cost		
Removals				
Full Depth Asphalt Removal	m ³	\$	42.55	
Existing granular excavation	m ³	\$	34.50	
Proposed Works				
Subgrade preparation	m²	\$	2.30	
Granular Base (Supply and compact 100% MPmdd)	Ton	\$	36.80	
Granular Subbase (Supply and compact 98% MPmdd)	Ton	\$	33.35	
HMAC Pavement	Ton	\$	218.50	
Asphalt tack coat	m²	\$	1.44	
150mm Topsoil + seed	m²	\$	13.23	
Line Marking	m²	\$	12.00	

Replacement Service Unit Costs based on recent BC quotes

Branch Use	Replacement Cost			
Runway	\$30,000,000			
Secondary Runway	\$20,000,000			
Taxiway	\$15,000,000			
Main Apron	\$6,000,000			
Apron (General Aviation)	\$12,000,000			
Helipad	\$1,000,000			
Parking	\$9,000,000			
Roadway	\$5,000,000			

- Cost of engineering services.
 10% of removal and construction
- 15% Contingency

Replacement Cost per Branch Use: hypothetical cost numbers

Long Term Work Programs

Runway example (hypothetical cost numbers)

Description	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	Total
Full Pavement Structure Rehab										\$30,000,000.00		\$30,000,000.00
Edge Lights and Cables					\$800,000							\$800,000
Airfield Guidance Signs					\$150,000							\$150,000
Approach lights										\$200,000.00		\$200,000.00

Long Term Work Programs

• Do Nothing Budget

- Highlights the detrimental effect of not spending any money on airfield pavements
- Steady State
 - Identifies the cost to maintain the existing network PCI at its current condition
- Improved Network/Asset State
 - Identifies the cost to maintain the network at a target PCI (e.g., 75)
- Maintain Network/Asset Deficiency
 - Identifies the cost to maintain network at a specified deficiency (e.g., 20%)
- Unlimited Budget
 - Assumes unlimited funding over the analysis period, which represents the theoretical maximum value to keep all its airfield pavements in good condition.

Conclusions

Small **regional** airports can have great benefits from a tangible asset audit, regardless of the size of commercial operations

Cost-effective **asset management** leads to wise investments:

Doing the right thing, to the right asset, at the right time

REGIONAL AIRPORT INFRASTRUCTURE AUDIT

5

SEPT 17-19 2024

Paula Barbi, Ph.D. Civil/Pavement EIT paula.barbi@stantec.com

